Abstract:
An inverting apparatus and a control method thereof are provided. The inverting apparatus includes an inverting circuit, a detection circuit, and a control circuit. The control circuit is coupled to the inverting circuit and the detection circuit and configured to provide a control signal to control the inverting circuit so as to adjust a voltage value of an input voltage into a command voltage represented by the control signal. The control circuit calculates a voltage difference between the detected input voltage and the command voltage so as to determine whether the voltage difference is greater than a preset value. When determining that the voltage difference is greater than the preset value, the control circuit sets the voltage value of the command voltage as the voltage value of the current input voltage.
Abstract:
An inverting apparatus and a control method thereof are provided. The inverting apparatus includes an inverting circuit, a capacitor, and a control circuit. The inverting circuit receives a DC input power and is configured to convert the DC input power into an AC output power, wherein an AC output current of the AC output power is preset to a preset output current. The capacitor is connected to an output terminal of the inverting circuit. The control circuit is coupled to the inverting circuit and is configured to control a power conversion of the inverting circuit, wherein the control circuit superimposes a preset capacitor compensation current of which the phase leads to the preset output current on the preset output current, so as to control the inverting circuit to adjust the AC output current and provide the adjusted AC output current to a power grid.
Abstract:
A control method for an inverter apparatus is provided. The inverter apparatus includes a direct current to direct current (DC/DC) converter and a direct current to alternating current (DC/AC) converter. An output side of the DC/DC converter is coupled to an input side of the DC/AC converter. The control method includes the following steps: outputting a DC power from the output side of the DC/DC converter; receiving the DC power from the input side of the DC/AC converter, and generating an AC power from an output side of the DC/AC converter according to the DC power; and detecting the DC power, and accordingly controlling an operation of the DC/AC converter.
Abstract:
An inverting apparatus and a photovoltaic power system using the same are provided. The inverting apparatus includes an inverting circuit, a control circuit, and a voltage regulator-based ground detection circuit. The control circuit controls the power conversion of the inverting circuit. The voltage regulator-based ground detection circuit samples an input voltage of the DC input power, and performs voltage regulation and voltage division on the input voltage to generate a ground indication voltage. The electric potential of the output terminal of the voltage regulator is built based on a photovoltaic ground terminal of a photovoltaic module. The ground indication voltage is the voltage difference between an output terminal of the voltage regulator and a device ground terminal of the inverting apparatus. The control circuit determines whether a ground fault occurs to the photovoltaic module and enables a ground protection mechanism to control the inverting circuit when the ground fault occurs.
Abstract:
An inverting apparatus and a detection method of an islanding operation are provided. The inverting apparatus includes an inverting circuit and a control circuit; the inverting circuit is connected to a power grid, wherein the inverting circuit receives a DC input power, and converts the DC input power into an AC output voltage and an AC output current; the control circuit is coupled to the inverting circuit; the control circuit is configured to control the power conversion of the inverting circuit, wherein the control circuit generates a disturbance signal base on a preset time interval to disturb the AC output current generated by the inverting circuit, and detects whether the frequency of the AC output voltage is located within a preset frequency range, so as to decide whether to enable an islanding protection mechanism.
Abstract:
An inverter apparatus is provided. The inverter apparatus includes a direct current to direct current (DC/DC) converter, a direct current to alternating current (DC/AC) converter and a control circuit. The DC/DC converter is arranged for converting an input power to a DC power according to a control signal. The DC/AC converter is coupled to the DC/DC converter, and is arranged for receiving the DC power, and generating an AC power according to the DC power. The control circuit is coupled to the DC/DC converter, and is arranged for generating the control signal according to a reference power and the input power so as to control an operation of the DC/DC converter, detecting the control signal to generate a detection result, and controlling the reference power according to the detection result so as to adjust a duty cycle of the control signal.
Abstract:
An inverter apparatus includes a direct current to direct current converter (DC/DC converter), a direct current to alternating current converter (DC/AC converter), a primary-side control circuit and a secondary-side control circuit. The DC/DC converter is arranged for outputting a first DC power and a second DC power. The DC/AC converter is coupled to the DC/DC converter, and is arranged for receiving the first DC power. The primary-side control circuit is coupled to the DC/DC converter, and is arranged for controlling an operation of the DC/DC converter. The secondary-side control circuit is coupled to the DC/DC converter and the DC/AC converter, and is arranged for receiving the second DC power, and controlling an operation of the DC/AC converter according to the second DC power.
Abstract:
An inverter apparatus is provided. The inverter apparatus includes a direct current to direct current (DC/DC) converter, a direct current to alternating current (DC/AC) converter and a control circuit. The DC/DC converter is arranged for converting an input power to a DC power according to a control signal. The DC/AC converter is coupled to the DC/DC converter, and is arranged for receiving the DC power, and generating an AC power according to the DC power. The control circuit is coupled to the DC/DC converter, and is arranged for generating the control signal according to a reference power and the input power so as to control an operation of the DC/DC converter, detecting the control signal to generate a detection result, and controlling the reference power according to the detection result so as to adjust a duty cycle of the control signal.
Abstract:
An inverting apparatus and an AC power system are provided. The inverting apparatus includes an inverting circuit, a detection circuit, and a control circuit. The inverting circuit receives a DC input voltage and converts the DC input voltage into an AC output voltage. The detection circuit samples the AC output voltage and compares the sampled AC output voltage respectively with a first reference voltage and a second reference voltage so as to generate a first indication signal and a second indication signal. The control circuit controls the operation of the inverting circuit. The control circuit determines whether the amplitude of the AC output voltage is located within an operating voltage range during each driving cycles according to the first and the second indication signals, and decides whether to enable an overvoltage protection or an undervoltage protection to control the power conversion of the inverting circuit according to the determination results.
Abstract:
An inverting apparatus and a control method thereof are provided. The inverting apparatus includes an inverting circuit, a detection circuit, and a control circuit. The inverting circuit converts a DC input power into an AC output power. The detection circuit detects an input voltage and an input current. The control circuit provides a control signal for disturbing the input voltage, such that a voltage value of the input voltage is adjusted to a command voltage represented by the control signal. The control circuit calculates an input power corresponding to each of time points, calculates a power variation between the disturbed power and the undisturbed power, then determines whether the power variation is larger than a predetermined variation, and sets a disturbance voltage according to the determination result, based on an MPPT operation or based on a disturbance direction of the command voltage of the previous time point.