Abstract:
A suspension assembly including a core member; and a skin member bonded on said core member. The skin member having a higher strength than the core member.
Abstract:
Methods and apparatus of a system for vehicles comprising a vehicle suspension, a sensor operable to measure an operational characteristic of the vehicle suspension, and a processor in communication with the sensor that is operable to suggest an operational setting of the vehicle suspension in response to an input from the sensor corresponding to the operational characteristic. A method for adjusting a suspension of a vehicle may comprise receiving suspension data with a processor, calculating a suspension setting suggestion with the processor, communicating the suspension setting suggestion to a user interface device, and adjusting the suspension based on the suspension setting suggestion.
Abstract:
A system configured to be coupled with a participant of an activity. The system comprises: a participant activity monitoring unit configured for monitoring a performance of the activity by the participant; an activity information module configured for storing performance information corresponding to the activity; and a participant performance correlator configured for delivering comparative performance data based on the monitored performance of the activity by the participant and the stored performance information.
Abstract:
A method for controlling vehicle motion is described. The method includes accessing a set of control signals including a measured vehicle speed value associated with a movement of a vehicle. A control signal associated with user-induced input is also accessed. The method compares the measured vehicle speed value with a predetermined vehicle speed threshold value to achieve a speed value threshold approach status, and then compares the set of values to achieve a user-induced input threshold value approach status. The method monitors a state of a valve within the vehicle suspension damper, and determines a control mode for the vehicle suspension damper. The method also regulates damping forces within the vehicle suspension damper.
Abstract:
A system configured to be coupled with a participant of an activity. The system comprises: a participant activity monitoring unit configured for monitoring a performance of the activity by the participant; an activity information module configured for storing performance information corresponding to the activity; and a participant performance correlator configured for delivering comparative performance data based on the monitored performance of the activity by the participant and the stored performance information.
Abstract:
A method for controlling vehicle motion is described. The method includes accessing a set of control signals including a measured vehicle speed value associated with a movement of a vehicle. A control signal associated with user-induced input is also accessed. The method compares the measured vehicle speed value with a predetermined vehicle speed threshold value to achieve a speed value threshold approach status, and then compares the set of values to achieve a user-induced input threshold value approach status. The method monitors a state of a valve within the vehicle suspension damper, and determines a control mode for the vehicle suspension damper. The method also regulates damping forces within the vehicle suspension damper.
Abstract:
A method and apparatus are disclosed that assist a user in performing proper setup of a vehicle suspension. A user may utilize a device equipped with an image sensor to assist the user in proper setup of a vehicle suspension. The device executes an application that prompts the user for input and instructs the user to perform a number of steps for adjusting the suspension components. In one embodiment, the application does not communicate with sensors on the vehicle. In another embodiment, the application may communicate with various sensors located on the vehicle to provide feedback to the device during the setup routine. In one embodiment, the device may analyze a digital image of a suspension component to provide feedback about a physical characteristic of the component.
Abstract:
A method for controlling vehicle motion is described. The method includes accessing a set of control signals including a measured vehicle speed value associated with a movement of a vehicle. A control signal associated with user-induced input is also accessed. The method compares the measured vehicle speed value with a predetermined vehicle speed threshold value to achieve a speed value threshold approach status, and then compares the set of values to achieve a user-induced input threshold value approach status. The method monitors a state of a valve within the vehicle suspension damper, and determines a control mode for the vehicle suspension damper. The method also regulates damping forces within the vehicle suspension damper.
Abstract:
A suspension assembly including a core member; and a skin member bonded on said core member. The skin member having a higher strength than the core member.
Abstract:
A shock absorber includes a gas spring cylinder containing a piston moveable between an extended position and a compressed position within the gas spring cylinder. A mechanical actuator is arranged whereby a bleed port is automatically closed when the gas spring is compressed to a predetermined position corresponding to a desired sag setting. In one embodiment, the position corresponds to a predetermined sag setting whereby the gas spring is partially compressed. In another embodiment, a proper sag setting is determined through the use of a processor and sensor that in one instance measure a position of shock absorber components to dictate a proper sag setting and in another instance calculate a pressure corresponding to a preferred sag setting.