Abstract:
Methods and apparatus of a system for vehicles comprising a vehicle suspension, a sensor operable to measure an operational characteristic of the vehicle suspension, and a processor in communication with the sensor that is operable to suggest an operational setting of the vehicle suspension in response to an input from the sensor corresponding to the operational characteristic. A method for adjusting a suspension of a vehicle may comprise receiving suspension data with a processor, calculating a suspension setting suggestion with the processor, communicating the suspension setting suggestion to a user interface device, and adjusting the suspension based on the suspension setting suggestion.
Abstract:
A multi-mode air shock is disclosed herein. The air shock includes an air spring having a primary air chamber, and a damper having an insertion end to telescope within the primary air chamber and a coupler to couple with a portion of a vehicle. An adjuster housing is fixedly coupled to an end of the air spring opposite of the damper, the adjuster housing having a secondary air chamber in communication with the primary air chamber and a mounting structure to couple with a different portion of the vehicle. There is a bulkhead with a valve to open or close the fluid communication between the primary air chamber and the secondary air chamber. The air shock also includes a tertiary air chamber in fluid communication with the secondary air chamber but not in fluid communication with the primary air chamber except via the secondary air chamber.
Abstract:
A method and apparatus are disclosed that assist a user in performing proper setup of a vehicle suspension. A user may utilize a device equipped with an image sensor to assist the user in proper setup of a vehicle suspension. The device executes an application that prompts the user for input and instructs the user to perform a number of steps for adjusting the suspension components. In one embodiment, the application does not communicate with sensors on the vehicle. In another embodiment, the application may communicate with various sensors located on the vehicle to provide feedback to the device during the setup routine. In one embodiment, the device may analyze a digital image of a suspension component to provide feedback about a physical characteristic of the component.
Abstract:
A suspension for a two-wheeled vehicle includes first and second fork legs. Each fork leg includes a dropout. Each dropout has an opening therethrough. At least a portion of one of the openings is threaded. Each of the dropouts includes a split-damp pinch bearing defining the opening and operable between an open position and a locked position, and a hand operable actuator pivoted to the bearing for operation thereof. The suspension further includes a one-piece axle. The axle is disposed through the openings. The axle has a threaded first end engaged with the threaded portion. The axle has an ergonomic grip formed at a second end. The bearing tightly engages an outer surface of the axle in the locked position, thereby rotationally coupling the axle to the dropout.
Abstract:
A method and apparatus for a vehicle suspension system gas spring. In one embodiment, a vehicle suspension system gas spring includes a compressible main gas chamber and an additional volume combinable with the main chamber to change a gas spring rate of the system. In one embodiment, a low friction piston seal is created by a flexible seal member.
Abstract:
A method and apparatus for a vehicle suspension system gas spring. In one embodiment, a vehicle suspension system gas spring includes a compressible main gas chamber and an additional volume combinable with the main chamber to change a gas spring rate of the system. In one embodiment, a low friction piston seal is created by a flexible seal member.
Abstract:
A suspension system includes a first suspension member movable relative to a second suspension member, a fluid reservoir having a volume, the volume variable in response to a relative movement between the first and second suspension members, and a fluid flow circuit having a first end in fluidic communication with the fluid reservoir and a second end in fluidic communication with an isolated suspension location, the fluid flow circuit comprising a first valve, a second valve and a third valve, wherein said first and third valves are in parallel with each other and the second valve is in series with each of the first and third valves.
Abstract:
A damping adjuster is disclosed herein. The damping adjuster includes an adjuster housing and an adjuster shaft. The adjuster shaft rotatable within the adjuster housing, the adjuster shaft comprising a variable flow area feature, the variable flow area feature formed annularly about a portion of the adjuster shaft, the variable flow area feature comprising a plurality of different flow area values therealong. The damping adjuster also includes a fluid flow path through the adjuster housing, wherein the fluid flow path includes the variable flow area feature of the adjuster shaft.
Abstract:
A method and apparatus for a vehicle suspension system gas spring. In one embodiment, a vehicle suspension system gas spring includes a compressible main gas chamber and an additional volume combinable with the main chamber to change a gas spring rate of the system. In one embodiment, a low friction piston seal is created by a flexible seal member.
Abstract:
A suspension system includes a first suspension member movable relative to a second suspension member, a fluid reservoir having a volume, the volume variable in response to a relative movement between the first and second suspension members, and a fluid flow circuit having a first end in fluidic communication with the fluid reservoir and a second end in fluidic communication with an isolated suspension location, the fluid flow circuit comprising a first valve, a second valve and a third valve, wherein said first and third valves are in parallel with each other and the second valve is in series with each of the first and third valves.