摘要:
An apparatus for controlling a phase-locked loop includes a detector for detecting at least one of a startup condition and a yank condition and a controller for controlling current between a charge pump and the phase-locked loop. If a startup condition is detected, the controller sinks current from a control node connected to a loop filter of the phase-locked loop. This, in turn, causes a bias voltage to increase until the phase-locked loop transitions from startup mode to a normal acquisition mode. The current sink is provided by a dummy charge pump and the startup condition is determined by detecting the end of a PLL disable state. If a yank condition is detected, a charge pump connected to a phase-frequency detector of the phase-locked loop controls the bias voltage until a feedback frequency becomes lower than a reference frequency. Methods for controlling a phase-locked loop during both modes of operation may use of the aforementioned apparatus.
摘要:
A control circuit corrects duty-cycle distortion of clock signals accurately and with a fast and continuous response over a wide dynamic range. In one embodiment, the duty-cycle correction circuit includes a self-biased loop that corrects duty-cycle distortions to preferably less than +/−1%. The duty-cycle correction circuit also compensates for changes in a supply voltage. These corrections may take place on a continuous basis, not only during a testing period but also during normal operation of the host system driven by the clock signals.
摘要:
A loop filter in the phase-locked loop includes a capacitor having a specific capacitance value. The loop filter also includes an amplifier coupled to a node of the capacitor. The amplifier amplifies a signal at the node in a way that increases the equivalent capacitance value without physically changing the capacitor.
摘要:
Disclosed herein are embodiments of a temperature compensating solution to reduce changes in PLL damping factor that would otherwise occur with changes in temperature.
摘要:
Disclosed herein are embodiments of controllably variable capacitor loads that may be used with delay stages or other elements, for example, in a voltage controlled oscillator.
摘要:
An apparatus for controlling a phase-locked loop includes a detector for detecting at least one of a startup condition and a yank condition and a controller for controlling current between a charge pump and the phase-locked loop. If a startup condition is detected, the controller sinks current from a control node connected to a loop filter of the phase-locked loop. This, in turn, causes a bias voltage to increase until the phase-locked loop transitions from startup mode to a normal acquisition mode. The current sink is provided by a dummy charge pump and the startup condition is determined by detecting the end of a PLL disable state. If a yank condition is detected, a charge pump connected to a phase-frequency detector of the phase-locked loop controls the bias voltage until a feedback frequency becomes lower than a reference frequency. Methods for controlling a phase-locked loop during both modes of operation may use of the aforementioned apparatus.
摘要:
A method for controlling a phase-locked loop includes receiving a frequency change signal and electrically isolating a VCO control node of the phase-locked loop from at least one charge pump of the loop. During this isolation period, the VCO control node voltage is held at a constant value equal to the voltage that existed before the frequency change signal was received. One or more parameters of the PLL are then altered in a manner that will ensure generation of a newly desired output frequency. These parameters include but are not limited to a feedback divider value and a reference frequency input into the PLL. The new output frequency may be above or below the pre-change signal frequency depending, for example, on a mode of operation of a host system. When the VCO control node is once again electrically connected to the charge pump, the PLL locks on to the desired output frequency. Through this method, frequency change is accomplished without performing a startup process and the time to perform a frequency acquisition process is significantly reduced.
摘要:
An on-chip, e.g., on a microprocessor, super filter-regulator acts as a voltage regulator and a low-pass filter. The voltage regulator generates a constant DC output voltage and regulates the DC voltage against instantaneous load changes. The low-pass filter and actively filters AC interference out of the DC output voltage. The super filter-regulator provides the filtered and regulated DC voltage to a phase locked loop circuit.
摘要:
An on-chip, e.g., on a microprocessor, super filter-regulator acts as a voltage regulator and a low-pass filter. The voltage regulator generates a constant DC output voltage and regulates the DC voltage against instantaneous load changes. The low-pass filter and actively filters AC interference out of the DC output voltage. The super filter-regulator provides the filtered and regulated DC voltage to a phase locked loop circuit.