Abstract:
3-Carbonylamino-8-aminoisoquinoline compounds of formula (I): variations thereof, and their use as inhibitors of HPK1 (hematopoietic kinase 1) are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the 3-carbonylamino-8-aminoisoquinoline compounds.
Abstract:
The present invention provides for compounds of Formula I-I and embodiments and salts thereof for the treatment of diseases (e.g., neurodegenerative diseases). R1, R2, R3, X1, X2, A and Cy variable in Formula I-I all have the meaning as defined herein.
Abstract:
The present invention provides for compounds of Formula I and embodiments and salts thereof for the treatment of diseases (e.g., neurodegenerative diseases). R1, R2, R3, X1, X2, A and Cy variable in Formula all have the meaning as defined herein.
Abstract:
Naphthyridine compounds and their use as inhibitors of HPK1 are described. The compounds are useful in treating HPK1-dependent disorders and enhancing an immune response. Also described are methods of inhibiting HPK1, methods of treating HPK1-dependent disorders, methods for enhancing an immune response, and methods for preparing the naphthyridine compounds.
Abstract:
The present invention provides for compounds of Formula (I) and various embodiments thereof, and compositions comprising compounds of Formula (I) and various embodiments thereof. In compounds of Formula I, the groups R1, R2, R3, R4, R5, R6 and R7 have the meaning as described herein. The present invention also provides for methods of using compounds of Formula I and compositions comprising compounds of Formula (I) as DLK inhibitors and for treating neurodegeneration diseases and disorders.
Abstract:
The present invention provides for compounds of Formula I-I and embodiments and salts thereof for the treatment of diseases (e.g., neurodegenerative diseases). R1, R2, R3, X1, X2, A and Cy variable in Formula I-I all have the meaning as defined herein.
Abstract:
A compound of Formula I, enantiomers, diasteriomers, tautomers or pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4 and R5 are defined herein, are useful as JAK kinase inhibitors. A pharmaceutical composition that includes a compound of Formula I and a pharmaceutically acceptable carrier, adjuvant or vehicle, and methods of treating or lessening the severity of a disease or condition responsive to the inhibition of JAK kinase activity in a patient are disclosed.
Abstract:
Benzopyran and benzoxepin compounds of Formulas I and II, and including stereoisomers, geometric isomers, tautomers, solvates, metabolites and pharmaceutically acceptable salts thereof, are useful for inhibiting lipid kinases including p110 alpha and other isoforms of PI3K, and for treating disorders such as cancer mediated by lipid kinases. Methods of using compounds of Formulas I and II for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.
Abstract:
The present invention provides for compounds of Formula I and embodiments and salts thereof for the treatment of diseases (e.g., neurodegenerative diseases). R1, R2, R3, X1, X2, A and Cy variable in Formula all have the meaning as defined herein.
Abstract:
A compound of Formula I, enantiomers, diasteriomers, tautomers or pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4 and R5 are defined herein, are useful as JAK kinase inhibitors. A pharmaceutical composition that includes a compound of Formula I and a pharmaceutically acceptable carrier, adjuvant or vehicle, and methods of treating or lessening the severity of a disease or condition responsive to the inhibition of JAK kinase activity in a patient are disclosed.