Abstract:
Various methods for controlling EGR rate are disclosed. In one embodiment, a method comprises routing at least a portion of exhaust from a first exhaust manifold to an intake manifold, and not to atmosphere, the first exhaust manifold exclusively coupled to a first cylinder group. The method further includes routing exhaust from at least one additional exhaust manifold coupled to a corresponding at least one additional cylinder group to atmosphere, and during a first engine operating condition where an engine fuel demand is below a threshold demand, not injecting fuel to each of a subset of cylinders in the first cylinder group while injecting fuel to a subset of all cylinders coupled to the at least one additional exhaust manifold, where a number of cylinders of the subset of cylinders in the first cylinder group decreases in response to an increase in a target EGR rate.
Abstract:
Various methods for controlling EGR rate are disclosed. In one embodiment, a method comprises routing at least a portion of exhaust from a first exhaust manifold to an intake manifold, and not to atmosphere, the first exhaust manifold exclusively coupled to a first cylinder group. The method further includes routing exhaust from at least one additional exhaust manifold coupled to a corresponding at least one additional cylinder group to atmosphere, and during a first engine operating condition where an engine fuel demand is below a threshold demand, not injecting fuel to each of a subset of cylinders in the first cylinder group while injecting fuel to a subset of all cylinders coupled to the at least one additional exhaust manifold, where a number of cylinders of the subset of cylinders in the first cylinder group decreases in response to an increase in a target EGR rate.
Abstract:
A method of controlling an engine includes injecting a first fuel and a second fuel to each of a donor cylinder group and a non-donor cylinder group of the engine. The method also includes injecting a higher fraction of the first fuel into the donor cylinder group in comparison to the first fuel being injected into the non-donor cylinder group. Further, the method includes injecting a lower fraction of the second fuel into the donor cylinder group in comparison to the second fuel being injected into the non-donor cylinder group. Furthermore, the method includes recirculating an exhaust emission from the donor cylinder group to the non-donor cylinder group and the donor cylinder group and combusting a mixture of air, the first fuel, the second fuel and the exhaust emission from the donor cylinder group in both the donor cylinder group and the non-donor cylinder group.