Abstract:
A device is presented. The device includes an electromagnetic guiding device to provide electromagnetic radiation, a reflector that reflects a portion of the electromagnetic radiation to generate a reflected portion of the electromagnetic radiation, wherein the reflector is fully immersed in a multiphase fluid, and a processing subsystem that analyzes the multiphase fluid based upon at least a portion of the reflected portion of the electromagnetic radiation, wherein a principal optical axis of the electromagnetic guiding device substantially aligns with a principal optical axis of the reflector.
Abstract:
A device is presented. The device includes an electromagnetic guiding device to provide electromagnetic radiation, a reflector that reflects a portion of the electromagnetic radiation to generate a reflected portion of the electromagnetic radiation, wherein the reflector is fully immersed in a multiphase fluid, and a processing subsystem that analyzes the multiphase fluid based upon at least a portion of the reflected portion of the electromagnetic radiation, wherein a principal optical axis of the electromagnetic guiding device substantially aligns with a principal optical axis of the reflector.
Abstract:
A holding is presented. The holding device includes a male connector comprising a first male extension and a second male extension that extend out of opposite surfaces of a male central disk, an electromagnetic guiding device continuously passing through a central hole that continuously passes through the first male extension, the male central disk and the second male extension, a reflector that is in a direct physical contact with a first end of the electromagnetic guiding device that ends at a top surface of the first male extension, and a holder that covers the first male extension to hold the reflector, and maintain the physical contact between the first end of the electromagnetic guiding device and the reflector.
Abstract:
A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
Abstract:
A method includes receiving a gas mixture at a first pressure including at least a primary gas and a secondary gas and changing a pressure of the received gas mixture from the first pressure to a second pressure. Further, the method includes determining a spectra of the gas mixture at the second pressure, wherein at least the first spectral line of the primary gas is spectrally distinguished from at least the second spectral line of the secondary gas, identifying a peak wavelength associated with the spectrally distinguished first spectral line of the primary gas based on at least two wavelengths of the secondary gas corresponding to at least two peak amplitudes in the spectra of the gas mixture, and determining a concentration of the primary gas based on the identified peak wavelength associated with the spectrally distinguished first spectral line of the primary gas.