Abstract:
An accelerometer includes a controller, a light source operatively coupled to the controller, and a bifurcated waveguide coupled to the light source and configured to receive light output by the light source. The bifurcated waveguide includes a first waveguide portion and a second waveguide portion. The accelerometer also includes a first resonator operatively coupled to the controller and configured to receive light from the first waveguide portion, and a second resonator operatively coupled to the controller and configured to receive light from the second waveguide portion. The first resonator includes a first proof mass, and the second resonator includes a second proof mass.
Abstract:
A sensor interrogation unit in one embodiment includes a control module, a reading module, and a determination module. The control module is configured to control one or more lasers to provide a pulsed signal to at least one sensor. Each period of the pulsed signal has a first component having a first intensity and a second component having a second intensity that is lower than the first intensity. The reading module is configured to receive at least one return signal comprising reflections of the pulsed signal from the at least one sensor, to read one of the first component or the second component, and to provide frequency information based on the read reflections. The determination module is configured to determine at least one resonant frequency of the at least one sensor based on the frequency information.
Abstract:
A system includes a downhole tool having a housing and a passage extending through the housing, where the passage includes an inlet configured to receive a flow of a wellbore fluid and an outlet configured to discharge the flow of the wellbore fluid. The downhole tool includes a heating element configured to heat the flow of the wellbore fluid and to enable the flow of the wellbore fluid to transition to a single-phase fluid flow within the passage. The downhole tool includes a phase composition sensor positioned adjacent the passage and configured to provide feedback indicative of formation of the single-phase fluid flow. The system includes a controller configured to monitor a power consumption of the heating element and to determine an enthalpy of the wellbore fluid based in part on the power consumption and the feedback from the phase composition sensor.
Abstract:
An accelerometer includes a membrane; a laser source, the laser source producing a laser beam, the laser beam directed at the membrane causing the membrane to vibrate; a transparent cap, the transparent cap disposed between the laser source and the membrane; an antireflecting film disposed on an outer surface of the transparent cap; and a detector sensing a reflected portion of the laser beam, the reflected portion including a modulated intensity. An acceleration signal is based in part on the frequency of the modulated intensity of the reflected portion of the laser beam.
Abstract:
A gas analysis system includes a scanning platform configured to direct a plurality of light beams over a target area. The scanning platform includes emitter spectroscopy assembly configured to emit the plurality of light beams toward respective target surfaces of the target area, receive a plurality of reflected light beams from the respective target surfaces, and determine a spectral intensity of each reflected light beam of the plurality of reflected light beams. Moreover, the scanning platform includes a main controller receive the feedback from the spectroscopy assembly indicative of the spectral intensity of each reflected light beam of the plurality of reflected light beams and determine a volumetric characterization of a gas plume based at least in part on the spectral intensity of a reflected light beam of the plurality of reflected light beams.
Abstract:
An apparatus and an associated method is provided for waveguide spectroscopy of a sample inside a container. The apparatus may include a substrate with a window that is transparent at the wavelengths of interest and is coupled to the container holding a sample; a waveguide core of a material that is transparent at the wavelengths of interest located on an inner surface of the transparent window adjacent the sample, the waveguide core having a refractive index greater than that of the sample, an optical element configured to couple light into and out of the waveguide, and a light source and one or more detectors located outside of the container.
Abstract:
A wavelength assignment system in one embodiment includes an upstream port, a sensor port, and a downstream port. The upstream port is configured to receive a transmitted signal including a drive component and a read component comprising individual read channel components at corresponding individual read wavelengths. The sensor port is configured to provide a sensor component of the transmitted signal including a sensor portion of the drive component and substantially all of an individual read channel component to a sensor. The downstream port is configured to provide a downstream component including a downstream portion of the drive component and at least one additional read channel component of the transmitted signal to at least one additional sensor disposed downstream of the sensor. The wavelength assignment system is configured to receive the transmitted signal and separate the transmitted signal into the sensor component and the downstream component.
Abstract:
A gas analysis system includes spectroscopy assembly coupled to a vehicle. The spectroscopy assembly includes a plurality of emitters configured to emit a plurality of light beams toward a target surface. Each light beam of the plurality of light beams comprises a predetermined wavelength. The spectroscopy assembly includes a collection optic configured to receive a plurality of reflected light beams reflected from the target surface. Additionally, the spectroscopy assembly includes a detector configured to receive the plurality of reflected light beams from the collection optic and to detect a spectral intensity of the plurality of reflected light beams. Further, the spectroscopy assembly includes a controller configured to receive a light beam signal from the detector indicative of the spectral intensity of the plurality of reflected light beams. The controller is configured to detect a target fluid based on the light beam signal.
Abstract:
A gas analysis system includes a spectroscopy assembly coupled to a vehicle. The spectroscopy assembly includes a multiplexer configured to combine a plurality of light beams into a multiplexed light beam, wherein the multiplexer is configured to direct the multiplexed light beam toward a target surface. Additionally, the spectroscopy assembly includes a collection optic configured to receive a reflected multiplexed light beam from the target surface. Further, the spectroscopy assembly includes a controller configured to de-multiplex the multiplexed light beam into a plurality of reflected light beams and determine a spectral intensity of the plurality of reflected light beams.
Abstract:
A gas analysis system includes spectroscopy assembly coupled to a vehicle. The spectroscopy assembly includes a plurality of emitters configured to emit a plurality of light beams toward a target surface. Each light beam of the plurality of light beams comprises a predetermined wavelength. The spectroscopy assembly includes a collection optic configured to receive a plurality of reflected light beams reflected from the target surface. Additionally, the spectroscopy assembly includes a detector configured to receive the plurality of reflected light beams from the collection optic and to detect a spectral intensity of the plurality of reflected light beams. Further, the spectroscopy assembly includes a controller configured to receive a light beam signal from the detector indicative of the spectral intensity of the plurality of reflected light beams. The controller is configured to detect a target fluid based on the light beam signal.