Abstract:
Fabrication methods are disclosed that facilitate the production of electronic structures that are both flexible and stretchable to conform to non-planar (e.g. curved) surfaces without suffering functional damage due to excessive strain. Electronic structures including CMOS devices are provided that can be stretched or squeezed within acceptable limits without failing or breaking. The methods disclosed herein further facilitate the production of flexible, stretchable electronic structures having multiple levels of intra-chip connectors. Such connectors are formed through deposition and photolithographic patterning (back end of the line processing) and can be released following transfer of the electronic structures to flexible substrates.
Abstract:
A method of forming the heterojunction bipolar transistor that includes providing a stack of a base layer, an extrinsic base layer, a first metal containing layer, and a dielectric cap layer. The dielectric cap layer and the first metal containing layer may be etched to provide a base contact and a dielectric cap. Exposed portions of the base layer may be etched selectively to the dielectric cap. A remaining portion of the base layer provides the base region. A hydrogenated silicon containing layer may be deposited with a low temperature deposition method. At least a portion of the hydrogenated silicon containing layer is formed on at least sidewalls of the base region. A second metal containing layer may be formed on the hydrogenated silicon containing layer. The second metal containing and the hydrogenated silicon containing layer may be etched to provide an emitter region and a collector region.
Abstract:
High resolution active matrix structures are fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed using a semiconductor-on-insulator substrate. The substrate is thinned using a layer transfer technique or chemical/mechanical processing. Driver transistors are formed on the semiconductor layer of the substrate along with additional circuits that provide other functions such as computing or sensing. Contacts to passive devices such as organic light emitting diodes may be provided by heavily doped regions formed in the handle layer of the substrate and then isolated. A gate dielectric layer may be formed on the semiconductor layer, which functions as a channel layer, or the insulator layer of the substrate may be employed as a gate dielectric layer.