Abstract:
Various embodiments include fin-type field effect transistor (FinFET) structures. In some cases, a FinFET structure includes: a p-type substrate; a silicon-controlled rectifier (SCR) over the p-type substrate, the SCR including: a p-well region and an adjacent n-well region over the substrate; and a negatively charged fin over the p-well region; and a Schottky diode electrically coupled with the SCR, the Schottky diode including a gate in the n-well region, the Schottky diode positioned to mitigate electrostatic discharge (ESD) across the negatively charged fin and the n-well region in response to application of a forward voltage across the gate.
Abstract:
Various embodiments include fin-type field effect transistor (FinFET) structures. In some cases, a FinFET structure includes: a substrate; a silicon-controlled rectifier (SCR) over the substrate, the SCR including: a p-well region and an adjacent n-well region over the substrate; and a negatively charged fin over the p-well region; and a Schottky diode electrically coupled with the SCR, the Schottky diode spanning between the p-well region and the n-well region, the Schottky diode for controlling electrostatic discharge (ESD) across the negatively charged fin and the n-well region.
Abstract:
Methods, apparatus, and systems relating to a MOSFET with ESD resistance, specifically, to a semiconductor device comprising a field-effect transistor (FET) comprising a gate, a source, and a drain, all extending parallel to each other in a first direction; at least one source electrostatic discharge (ESD) protection circuit; a source terminal disposed above and in electrical contact with the at least one source ESD protection circuit, wherein the source terminal extends in the first direction; at least one drain ESD protection circuit; and a drain terminal disposed above and in electrical contact with the at least one drain ESD protection circuit, wherein the drain terminal extends in the first direction.
Abstract:
An electro-static discharge (ESD) protection transistor device includes a plurality of transistor gates that extend parallel to one another in a first direction and a plurality of source/drain diffusion areas that extend parallel to one another in a second direction perpendicular to the first direction. Each source/drain diffusion area comprises a plurality of source/drain areas disposed between respective ones of the plurality of transistor gates. The ESD protection transistor device further includes a source contact positioned over each source area of the plurality of source areas and a drain contact positioned over each drain area of the plurality of drain areas. With respect to each source/drain diffusion area of the plurality of source/drain diffusion areas, the source contacts are offset from the drain contacts with respect to the first direction.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to transistor structures and methods of manufacture. The structure includes active metal lines separated by electrically floating metal layers which have a width less than a width of the active metal lines.
Abstract:
Methods, apparatus, and systems relating to a MOSFET with ESD resistance, specifically, to a semiconductor device comprising a field-effect transistor (FET) comprising a gate, a source, and a drain, all extending parallel to each other in a first direction; at least one source electrostatic discharge (ESD) protection circuit; a source terminal disposed above and in electrical contact with the at least one source ESD protection circuit, wherein the source terminal extends in the first direction; at least one drain ESD protection circuit; and a drain terminal disposed above and in electrical contact with the at least one drain ESD protection circuit, wherein the drain terminal extends in the first direction.
Abstract:
High-voltage semiconductor devices with electrostatic discharge (ESD) protection and methods of fabrication are provided. The semiconductor devices include a plurality of transistors on a substrate patterned with one or more common gates extending across a portion of the substrate, and a plurality of first S/D contacts and a plurality of second S/D contacts associated with the common gate(s). The second S/D contacts are disposed over a plurality of carrier-doped regions within the substrate. One or more floating nodes are disposed above the substrate and, at least in part, between second S/D contacts to facilitate defining the plurality of carrier-doped regions within the substrate. For instance, the carrier-doped regions may be defined from a mask with a common carrier-region opening, with the floating node(s) intersecting the common carrier-region opening and facilitating defining, along with the common opening, the plurality of separate carrier-doped regions.
Abstract:
A fin field effect transistor (FinFET) ESD device is disclosed. The device may include: a substrate; a silicon-controlled rectifier (SCR) over the substrate, the SCR including: a p-well region over the substrate; an n-well region laterally abutting the p-well region over the substrate; a first P+ doped region over the p-well region; a first N+ doped region over the p-well region; and a second N+ doped region over the p-well region; and a Schottky diode electrically coupled to the n-well region, wherein the Schottky diode spans the n-well region and the p-well region, and wherein the Schottky diode controls electrostatic discharge (ESD) between the second N+ doped region and the n-well region.
Abstract:
Various embodiments include fin-type field effect transistor (FinFET) structures. In some cases, a FinFET structure includes: a substrate; a silicon-controlled rectifier (SCR) over the substrate, the SCR including: a p-well region and an adjacent n-well region over the substrate; and a negatively charged fin over the p-well region; and a Schottky diode electrically coupled with the SCR, the Schottky diode spanning between the p-well region and the n-well region, the Schottky diode for controlling electrostatic discharge (ESD) across the negatively charged fin and the n-well region.
Abstract:
Methods, apparatus, and systems relating to a semiconductor device having an ESD function for providing a first ESD current flow in a first path and a second ESD current flow in a second path. The semiconductor device includes a pad for at least one of receiving or transmitting an electrical signal; a victim circuit; an electrostatic discharge (ESD) protection device configured for receiving at least a portion of an ESD current resulting from an ESD event and for protecting the victim circuit from damage from the ESD current; an ESD current control module capable of receiving an ESD current resulting from the ESD event from the pad, wherein the ESD current control module is capable of directing a first ESD current portion through the ESD protection device and a second ESD current portion through the victim circuit. The semiconductor device also comprises a dissipation path for receiving the first and second ESD current portions and directing the first and second ESD current portions through the dissipation path to a ground node.