Abstract:
A system for assembling a first component and a second component comprises a support operatively supporting the first component without any fixtures, a vision system configured to view the supported first component and the second component and determine the locations thereof, a robotic system configured to move and position the second component relative to the first component, and a controller operatively connected to the vision system and to the robotic system and operable to control the robotic system to position the second component relative to the first component based on the locations determined by the vision system. Various methods of assembling the first component and the second component are provided to create a process joint prior to creation of a structural joint in a subsequent assembly operation.
Abstract:
A robotic system for presenting a payload within a workspace includes a pair of serial robots configured to connect to the payload, a parallel robot coupled to a distal end of one of the serial robots such that the parallel robot is disposed between the distal end and the payload, a sensor situated within a kinematic chain extending between the distal end and the payload, and a robot control system (RCS). The sensor outputs a sensor signal indicative of a measured property of the payload. The RCS includes a coordinated motion controller configured to control the serial robots, and a corrective motion controller configured to control the parallel robot. Parallel robot control occurs in response to the sensor signal concurrently with control of the serial robots in order to thereby modify the property of the payload in real-time.
Abstract:
A wiper system for use with a windshield includes a track guide, a wiper assembly, a drive mechanism and a wipe mechanism. The wiper assembly has a wiper arm attached at a first end thereof to a rotor rotatably disposed on a wiper carrier, wherein the wiper carrier is engaged with the track guide and is configured for translation therealong. The drive mechanism is connected with the wiper carrier and is configured for positioning the wiper carrier along the track guide. The wipe mechanism is connected with at least one of the rotor and the wiper carrier and is configured to cause the rotor to rotate, thereby causing the wiper arm to produce a wiping motion.
Abstract:
An underactuated joining system for a moving assembly line includes a robot with actuated joints, an articulated compliance mechanism, and a controller. An end-effector of the mechanism is connected to linkages and to a joining tool, unactuated joints interconnect the linkages, and position sensors measure joint positions of the unactuated joints. In response to the joint positions, a controller regulates a position of the actuated joints to cause the compliance mechanism to compliantly follow the assembly line. This occurs while the tool remains engaged with a workpiece being transported along the assembly line. A method includes engaging the tool with the workpiece as the workpiece is transported by the assembly line, measuring joint positions of the unactuated joints using position sensors, and controlling a position of the active joints to cause the compliance mechanism to compliantly follow the workpiece along the assembly line.
Abstract:
A robotic system for presenting a payload within a workspace includes a pair of serial robots configured to connect to the payload, a parallel robot coupled to a distal end of one of the serial robots such that the parallel robot is disposed between the distal end and the payload, a sensor situated within a kinematic chain extending between the distal end and the payload, and a robot control system (RCS). The sensor outputs a sensor signal indicative of a measured property of the payload. The RCS includes a coordinated motion controller configured to control the serial robots, and a corrective motion controller configured to control the parallel robot. Parallel robot control occurs in response to the sensor signal concurrently with control of the serial robots in order to thereby modify the property of the payload in real-time.
Abstract:
An electromechanical system operates in part through physical interaction with an operator, and includes a multi-axis robot, a controller, and a counterbalance mechanism connected to the robot. The counterbalance mechanism includes a base structure connected to a set of linkages, a pneumatic cylinder, a spring-loaded cam assembly, and an optional constant force spring. The linkages form a four-bar parallelogram assembly connectable to a load. The cylinder and cam assembly, and optional constant force spring, each impart respective vertical forces to the parallelogram assembly. The forces combine to provide gravity compensation and self-centering functions or behaviors to the load, enabling the load to move with a vertical degree of freedom when manually acted upon by the operator, and to return the load to a nominal center position.
Abstract:
A wiper system for use with a windshield includes a track guide, a wiper assembly, a drive mechanism and a wipe mechanism. The wiper assembly has a wiper arm attached at a first end thereof to a rotor rotatably disposed on a wiper carrier, wherein the wiper carrier is engaged with the track guide and is configured for translation therealong. The drive mechanism is connected with the wiper carrier and is configured for positioning the wiper carrier along the track guide. The wipe mechanism is connected with at least one of the rotor and the wiper carrier and is configured to cause the rotor to rotate, thereby causing the wiper arm to produce a wiping motion.
Abstract:
A compliant end effector includes a robot mounting bracket and a component support member. The component support member includes a side surface and a top surface. A component clamping system includes a first clamp member operable to move toward the side surface of the component support member and a second clamp member operable to move toward the top surface of the component support member. A controller is operatively connected to the clamping system. The controller is configured to engage the first and second clamp members as the component gripping and manipulating system is in a set position and release the first clamp member and the second clamp member allowing a portion of a component held by the component clamping system to move with one or more degrees of freedom when the component gripping and manipulating system is moving to the set position.
Abstract:
A robotic system for use with a payload includes a robot, a passive compliance mechanism, position sensors, and an electronic control unit (ECU). Actuated joints of the robot provide the robotic system with actuated degrees of freedom (DOF). The compliance mechanism is connected to the robot and payload, and has unactuated joints providing the robotic system with unactuated DOF. The sensors measure joint positions of the joints. The ECU has a trajectory generator block which generates a payload trajectory signal in response to dynamic control inputs, and an impedance control unit (ICU) applying damping and stiffness parameters to the payload trajectory signal to generate an initial velocity command. A stiction compensation block allows the robotic system to generate a velocity offset, and applies the velocity offset to the initial velocity command to produce a final velocity command for the robot.
Abstract:
A compliant end effector includes a robot mounting bracket and a component support member. The component support member includes a side surface and a top surface. A component clamping system includes a first clamp member operable to move toward the side surface of the component support member and a second clamp member operable to move toward the top surface of the component support member. A controller is operatively connected to the clamping system. The controller is configured to engage the first and second clamp members as the component gripping and manipulating system is in a set position and release the first clamp member and the second clamp member allowing a portion of a component held by the component clamping system to move with one or more degrees of freedom when the component gripping and manipulating system is moving to the set position.