Abstract:
An engine assembly includes an engine block defining a cylinder, an exhaust system, and an exhaust gas recirculation system. A first exhaust valve is configured to control fluid communication from the cylinder to the exhaust system. A second exhaust valve is configured to control fluid communication from the cylinder to the exhaust gas recirculation system. The second exhaust valve is selectively activatable and deactivatable independently of the first exhaust valve.
Abstract:
A multi-cylinder spark-ignition internal combustion engine (engine) that includes a dedicated-cylinder exhaust gas recirculation (EGR) system is described. The dedicated-cylinder EGR system includes a controllable exhaust gas diverter valve that selectively diverts all exhaust gas produced by one of the cylinders to an air intake system of the engine. A method for controlling the engine includes monitoring a parameter associated with operation of the dedicated-cylinder EGR system. Upon detecting a change in the parameter that indicates a change in operation of the dedicated-cylinder EGR system, a controller controls operation of the internal combustion engine to reduce an effective cylinder compression ratio.
Abstract:
An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.
Abstract:
A multi-cylinder spark-ignition internal combustion engine includes a plurality of first and second intake valves disposed between the air intake system and a corresponding plurality of engine cylinders. The engine also includes a dedicated-cylinder exhaust gas recirculation (EGR) system including an exhaust runner fluidly connected between exhaust valve(s) of one of the cylinders and the air intake system of the engine. A controllable intake valve activation system is configured to control openings of the plurality of first and second intake valves. A controller is operatively connected to the engine and the controllable intake valve activation system, and includes an instruction set to monitor operation of the engine, and control openings of the plurality of first intake valves and control openings of the plurality of second intake valves to generate in-cylinder mixing of a cylinder charge that achieves combustion stability for an engine speed/load operating point.
Abstract:
A multi-cylinder spark-ignition internal combustion engine (engine) that includes a dedicated-cylinder exhaust gas recirculation (EGR) system is described. The dedicated-cylinder EGR system includes a controllable exhaust gas diverter valve that selectively diverts all exhaust gas produced by one of the cylinders to an air intake system of the engine. A method for controlling the engine includes monitoring a parameter associated with operation of the dedicated-cylinder EGR system. Upon detecting a change in the parameter that indicates a change in operation of the dedicated-cylinder EGR system, a controller controls operation of the internal combustion engine to reduce an effective cylinder compression ratio.
Abstract:
A method of operating a gasoline engine having a first subset of cylinders and a second subset of cylinders includes providing a flow of compressed air from a single-sequential compressor to the engine, selectively deactivating the first subset of cylinders, and igniting gasoline mixed with the compressed air in the second subset of cylinders. The single-sequential compressor includes a dual sided impeller having a first blade arrangement in fluid communication with a first air inlet, and an opposing second blade arrangement in fluid communication with a second air inlet. Additionally, deactivating the first subset of cylinders includes sealing the first subset of cylinders such that the flow of compressed air is provided only to the second subset of cylinders.
Abstract:
A valve seat formed within an aluminum engine component includes a valve seat surface machined within the aluminum engine component, a layer of copper alloy material laser clad onto the valve seat surface of the aluminum engine component, the layer of copper alloy material having a thickness of less than 2.0 millimeters, and a layer of copper alloy/tool steel carbide material laser clad onto the layer of copper alloy material, the layer of copper alloy/tool steel carbide material having an average thickness of less than 0.5 millimeters, wherein the layer of copper alloy/tool steel carbide material has an outer surface that is machined to a final valve seat profile.
Abstract:
An engine system includes: an internal combustion engine having a plurality of cylinders; a bypass valve arranged to receive exhaust output from at least a dedicated one of the cylinders and to selectively one of: direct the exhaust through an exhaust system to atmosphere; and direct the exhaust to an exhaust gas recirculation (EGR) valve; the EGR valve, where the EGR valve is configured to, when open, enable flow of the exhaust to an intake manifold of the internal combustion engine; and an intake air valve located between an air cleaner and a mass airflow (MAF) sensor and configured to, when open, enable flow of ambient air to the intake manifold.
Abstract:
An exhaust gas recirculation (EGR) system with independent intake air compressor includes an engine having at least one cylinder communicating with a cylinder exhaust passage. A bypass valve positioned in the cylinder exhaust passage when selectively aligned in a first position directs all exhaust from the at least one cylinder to an exhaust passage and when selectively aligned in a second position directs all exhaust from the at least one cylinder into an EGR dedicated passage. An intake manifold is in communication with the EGR dedicated passage. An electrically powered eBoost compressor when activated receives atmospheric air and generates a required boosted air pressure flow during a mid-load engine operation portion and a high-load engine operation portion for introduction into the intake manifold independently of the EGR dedicated passage. The eBoost compressor is deactivated during a low-load engine operation portion. A motor-generator generates at least a portion of the power for the eBoost compressor.
Abstract:
A method of operating a gasoline engine having a first subset of cylinders and a second subset of cylinders includes providing a flow of compressed air from a single-sequential compressor to the engine, selectively deactivating the first subset of cylinders, and igniting gasoline mixed with the compressed air in the second subset of cylinders. The single-sequential compressor includes a dual sided impeller having a first blade arrangement in fluid communication with a first air inlet, and an opposing second blade arrangement in fluid communication with a second air inlet. Additionally, deactivating the first subset of cylinders includes sealing the first subset of cylinders such that the flow of compressed air is provided only to the second subset of cylinders.