Abstract:
Methods and systems facilitate network communications between a wireless network-connected thermostat and a cloud-based management server in a manner that promotes reduced power usage and extended service life of a energy-storage device of the thermostat, while at the same time accomplishing timely data transfer between the thermostat and the cloud-based management server for suitable and time-appropriate control of an HVAC system. The thermostat further comprises powering circuitry configured to: extract electrical power from one or more HVAC control wires in a manner that does not require a “common” wire; supply electrical power for thermostat operation; recharge the energy-storage device (if needed) using any surplus extracted power; and discharge the energy-storage device to assist in supplying electrical power for thermostat operation during intervals in which the extracted power alone is insufficient for thermostat operation.
Abstract:
In a multi-sensing, wirelessly communicating learning thermostat that uses power-harvesting to charge an internal power source, methods are disclosed for ensuring that the battery does not become depleted or damaged while at the same time ensuring selected levels of thermostat functionality. Charge status is monitored to determine whether the present rate of power usage needs to be stemmed. If the present rate of power usage needs to be stemmed, then a progression of performance levels and/or functionalities can be scaled back according to a predetermined progressive power conservation algorithm. In one embodiment, a wake-on-proximity function that activates a user interface based on readings from the proximity sensor may be altered while still allowing a HVAC control circuitry to operate as normal.