Thermal Mitigation for An Electronic Speaker Device and Associated Apparatuses and Methods

    公开(公告)号:US20210392795A1

    公开(公告)日:2021-12-16

    申请号:US16899148

    申请日:2020-06-11

    Applicant: Google LLC

    Abstract: The present disclosure describes thermal mitigation for an electronic speaker device and associated systems and methods. The thermal mitigation includes monitoring several thermal zones to determine or estimate thermal conditions in corresponding parts of the electronic speaker device. The thermal zones may include a System-on-Chip (SoC) integrated circuit (IC) component, audio components including power-dissipating IC components, and a temperature of an exterior surface of a housing component of the electronic speaker device. To mitigate thermal runaway, different throttling schemes may be triggered based on the thermal zones exceeding certain thermal limits. The throttling schemes may include reducing the amount of power supplied to the SoC, reducing audio power of the audio components to a lower wattage, or manipulating SoC cores such as by disabling one or more of the cores or adjusting utilization of the SoC cores.

    Hollow core electromagnetic coil
    17.
    发明授权

    公开(公告)号:US10804027B2

    公开(公告)日:2020-10-13

    申请号:US16244552

    申请日:2019-01-10

    Applicant: GOOGLE LLC

    Abstract: An augmented reality/virtual reality (AR/VR) system employs a tracking system for tracking one or more components of the AR/VR system using a generated electromagnetic (EM) field. The tracking system employs an EM coil for generating the EM field or, alternatively, sensing the EM field. The EM coil includes a core substrate and thin metal foil wrapped around the core substrate in three orthogonal axes. The EM coil is effectively “hollow” in that it weighs less than a conventional solid ferrite or ferrous core of comparable dimensions, either through the use of one or more openings formed in the core substrate, the use of a material less dense than ferrite or ferrous materials, the formation of the core substrate as a hollow framework, or a combination thereof. The resulting EM coil thus weighs less than conventional solid-core EM coils, thereby reducing user fatigue and the possibility of misalignment of the EM coil as a result from a drop impact of the device implementing the EM coil.

Patent Agency Ranking