Abstract:
A radio base station generates a congestion status flag, based on measured resource usage in its cell, and based on performance of sessions in the cell. The flag may be a one bit, or a small number of bits, indicating whether the base station is congested. The flag can be sent to neighboring radio base stations, for use in determining whether to perform handovers to that radio base station. The flag generated in a radio base station, and the flags generated in neighboring radio base stations, can also be sent to user equipment in a cell.
Abstract:
Methods and apparatus for scheduling link resources in a wireless communication system are disclosed. In an exemplary method, a first scheduling policy vector, or SPV, is generated, the SPV including scheduling elements that prescribe a probability of use for each of several corresponding quantities of link resources. In some embodiments the link resources are LTE resource blocks. The SPV is transmitted to a mobile terminal for use in determining a quantity of link resource units to be scheduled in at least a first transmission time interval. The SPV may be transmitted along with a scheduling window parameter that specifies a period of applicability for SPV.
Abstract:
Methods and apparatuses relating to optimization of radio network resources between user equipments operating in a cell and nodes in a cellular radio communication network are provided. Cross-layer information is read from higher level control plane protocol layer packets being transported, before or during lower level control plane protocol layer procedures being performed between a user equipment and a node or between two nodes. The lower level control plane protocol layer procedures are optimized by using the analyzed control plane information received.
Abstract:
The present disclosure relates to a method and a network node 100 in a wireless communications network 1. In particular, it relates to selecting a frequency band for operation for user equipment 9 in the wireless communications network 1. The frequency band to be selected is either a licensed frequency band or an unlicensed frequency band. The network node 100 is a macro base station 5, or a home base station (7, 700), and is adapted to condition measurements communicate with user equipments 9 in the wireless communications network 1 which comprises both the macro base station 5 and the home base station (7, 700). The home base station (7, 700) is adapted to support operation in both the licensed frequency band and the unlicensed frequency band. The method comprises obtaining radio condition measurements performed on the licensed frequency band and/or on the unlicensed frequency band; selecting the frequency band, based on the obtained radio condition measurements; and updating the home base station of the selected frequency band to be used for communication with one or more of the user equipments.
Abstract:
The present invention relates to a user equipment and a network node, and to related methods of supporting resource efficient ad hoc networking between user equipments (UEs) of a cellular network. This is addressed by a solution where the network node is supporting the ad hoc networking between UEs. The network node is capable of 5 accessing a user equipment capability database and receives (210, 220) update messages from UEs (UE1, UE2) comprising information regarding the capabilities of the user equipments such as supported frequency bands, RATs and antenna modes. The network node updates (230) the user equipment capability database (DB) with the information comprised in the received update message, and determines based on the 10 information stored in the user equipment capability database and a matching algorithm (240), that UE1 and UE2 have matching capabilities and are able to communicate wirelessly. The network node then transmits (250) an ad hoc “paging” message comprising the UE1 and UE2 identities. The “paging” message is received by the UE1 and UE2 identified in the “paging” message, and UE1 may then e.g. establish an ad hoc 15 network with UE2 (260).
Abstract:
A node of a multi-radio access technology (RAT) system acquires resource status information associated with each RAT of the multi-RAT system. The resource status information of the RATs of the multi-RAT system can be acquired by sniffing higher layer protocol information pertaining to call setup requests and/or call terminated messages. The node further maintains a flag representing overall resource availability associated with the RATs of the multi-RAT system, based on the acquired resource status information, for use in admission control and/or load balancing. The flag is associated with a pre-defined set of overall resource availability states of the multi-RAT system, where the availability states are defined in terms of admission control decisions. The availability states comprise at least one of the following admission control decisions: i) unconditional acceptance of all services; ii) conditional acceptance of broadband guaranteed bit rate (GBR) services and unconditional acceptance of all other services; iii) conditional acceptance of broadband GBR services, conditional acceptance of narrowband GBR services, and unconditional acceptance of other services; or iv) unconditional rejection of all services.
Abstract:
Methods and apparatuses relating to optimization of radio network resources between user equipments operating in a cell and nodes in a cellular radio communication network are provided. Cross-layer information is read from higher level control plane protocol layer packets being transported, before or during lower level control plane protocol layer procedures being performed between a user equipment and a node or between two nodes The lower level control plane protocol layer procedures are optimized by using the analyzed control plane information received.
Abstract:
Embodiments relate to device-to-device (D2D) communications in a communications network (1), wherein the communications network (1) comprises a first user equipment (10), a first radio network node (14) serving the first user equipment (10), a second user equipment (12). and a D2D capable radio network node (18,18). The first user equipment (TO) is configured to recognize a second user equipment (12) to have a D2D communication with and to perform a cell change from the first radio network node (14) to the D2D capable radio network node (16,18), when the first radio network node (14) does not have D2D capability.
Abstract:
The invention discloses a method for a cellular communications system, in which there is a first plurality of cells and a second plurality of base stations, each base station controlling the traffic to and from user terminals in a cell. User terminals can assume an idle mode, where a user terminal when in an idle mode performs cell reselection, comprising an evaluation of the cells which are available to the user terminal. The base stations of a number of cells in the system transmit a set of reselection probabilities, each probability in said set being the probability with which a terminal when in idle mode may carry out a reselection from its present cell to the cell to which the probability refers.
Abstract:
Method in a user equipment for selecting a cell associated with a radio access technology. The method comprises the steps of obtaining an instruction to select a cell to be used among cells using a radio access technology being associated with a specific service class. Also comprising receiving a broadcast, which broadcast uses a radio access technology being associated with a respective service class and being associated with a respective priority level within that service class. Also comprising selecting a cell, which cell is using a radio access technology being associated with the specific service class in accordance with the obtained instruction and which cell is associated with the highest priority level. An arrangement in a user equipment, a method in a base station, an arrangement in a base station, a method in a core network node and an arrangement in a core network node is also provided.