Abstract:
The desensitizing device contains an electrical stimulation member optionally configured on a support member. The electrical stimulation member contains a control circuit and at least two electrodes. The control circuit generates a stimulating current to the electrodes. By configuring the electrodes contacted with the skin, the stimulating signal produced by the control circuit is conducted to the electrodes and provides a subcutaneous nerve stimulation through the skin. The subcutaneous nerve is as such temporarily numbed and desensitized.
Abstract:
An electronic stimulation device is adapted for electrically stimulating a target zone of an organism with relative low pain sensations without generating relative much sensations of paresthesia. The electronic stimulation device comprises at least one electronic stimulation unit. The electronic stimulation unit includes at least one first electrode and at least one second electrode. The electronic stimulation unit receives a high-frequency electrical stimulation signal to impel the first electrode and the second electrode to generate an electric field. The range of the electric field covers the target zone, and the electric field strength ranges from 100 V/m to 1000 V/m. The frequency of the high-frequency electrical stimulation signal ranges from 200 KHz to 1000 KHz.
Abstract:
An electronic stimulation device for electrically stimulating at least one dorsal root ganglion with relative low pain sensations without generating relative much sensations of paresthesia comprises at least one electronic stimulation unit. The electronic stimulation unit includes at least one first electrode and at least one second electrode, and it delivers a high-frequency electrical stimulation signal to impel the first electrode and the second electrode to generate an electric field. The frequency of the high-frequency electrical stimulation signal ranges from 200 kHz to 1000 kHz.
Abstract:
An external control device includes a human-computer interface, a first controller and a power transmitting unit. An implantable medical device includes a power receiving unit, a second controller and a second detector. A method for monitoring power supply comprises: producing a first magnetic field by the power transmitting unit; sensing the first magnetic field to produce a second magnetic field and converting it into a direct current by the power receiving unit; detecting a power value of the direct current by the second detector to output a detection signal to the second controller; outputting a status information to the external control device by the second controller according to the detection signal; and receiving the status information by the first controller. The first controller transmits an adjustment signal to the power transmitting unit if informed of the status information that the power value is not within a designate power range.
Abstract:
A water resistant connector jointing with a housing, comprises a base, a sleeve plug disposed in the base, a clamping member disposed in the base and a locking member. The sleeve plug contacts with the neck portion of the base. The locking member is locked at the housing and contacts with the clamping member. The transmission line passes through the locking member, the clamping member, and the sleeve plug such that one portion of the transmission line is exposed at the exterior of the base. The locking member moves linearly and extrudes the clamping member and the sleeve plug such that the sleeve plug has deformation by the extrusion from the neck portion of the base. The effects of water resistance and seal may be achieved by using the sleeve plug to tightly joint with the internal wall of the base and the transmission line.
Abstract:
The desensitizing device contains an electrical stimulation member optionally configured on a support member. The electrical stimulation member contains a control circuit, at least two electrodes, and an electricity supply element. The electricity supply element provides electricity to the control circuit, and the control circuit generates a stimulating current to the electrodes. By configuring a male genital with the support member so that the electrodes are in contact with the penis skin, the stimulating current produced by the control circuit is conducted to the electrodes and provides a low-strength subcutaneous nerve stimulation through the penis skin. The subcutaneous nerve is as such temporarily numbed and desensitized.
Abstract:
An electrical stimulation device is provided. The electrical stimulation device includes a power management circuit and an electrical stimulation generation circuit. The power management circuit generates a first voltage and a second voltage to power the electrical stimulation generation circuit. The electrical stimulation generation circuit includes a working-electrode contact and a reference-electrode contact. The electrical stimulation generation circuit generates a first electrical signal at the working-electrode contact and further generates a second electrical signal at the reference-electrode contact. The first electrical signal comprises a plurality of first alternating-current (AC) pulses configuring to for electrically stimulate a target region of a target object.
Abstract:
The desensitizing device contains an electrical stimulation member optionally configured on a support member. The electrical stimulation member contains a control circuit and at least two electrodes. The control circuit generates a stimulating current to the electrodes. By configuring the electrodes contacted with the skin, the stimulating signal produced by the control circuit is conducted to the electrodes and provides a subcutaneous nerve stimulation through the skin. The subcutaneous nerve is as such temporarily numbed and desensitized.
Abstract:
A medical electronic device comprises at least a battery module, a detector for detecting the remaining battery of the battery module to generate a detection signal, a processor generating a first status information according to the detection signal, a transceiver and a function circuit. The processor transmits and receives the first status information and the control signal by the transceiver. The function circuit is electrically connected to the processor and at least an electrode. The electrode extends outward from the medical electronic device. According to the control signal, the processor controls the function circuit to output an electrical stimulation signal with default stimulation frequency, stimulation cycle and stimulation intensity to the electrode. The voltage of the electrical stimulation signal ranges from −10V to −1V and from 1V to 10V, and the frequency of the electrical stimulation signal is between 200 KHz and 800 KHz.
Abstract:
The electromagnetic stimulation device contains at least a positive electrode and at least a negative electrode. An insulating gap having width of a first distance is maintained between the positive and negative electrodes. The positive and negative electrodes are at least at a second distance away from a nerve to be stimulated. A preset voltage is applied to the positive and negative electrodes so that a low-power, low-temperature, high-frequency electromagnetic field covering and stimulating the nerve is produced between the positive and negative electrodes. By the stimulation of the low-power, low-temperature, high-frequency electromagnetic field, the nerve's threshold is increased, the nerve's transmission capability is reduced, and therefore the nerve pain is effectively eased.