Abstract:
A production method of spark-ignition engine fuel, configured to produce fuel for a spark-ignition engine, includes: mixing a light naphtha with a cyclopentane.
Abstract:
Fuel reform apparatus includes: internal combustion engine including injector and configured so that compression-ignition combustion is carried out in combustion chamber; reform unit interposed in fuel supply path from fuel tank to injector and including reformer reforming fuel stored in fuel tank by oxidation reaction; and controller including CPU and memory. Controller performs: estimating progress level of oxidation reaction in reformer; and controlling operation of reform unit based on progress level of oxidation reaction estimated.
Abstract:
Fuel reform apparatus includes: internal combustion engine including injector and configured so that compression-ignition combustion is carried out in combustion chamber; reform unit interposed in fuel supply path from fuel tank to injector and including reformer reforming fuel stored in fuel tank by oxidation reaction; ignition timing detector detecting ignition timing of fuel in combustion chamber; and controller including CPU and memory. Controller performs: determining whether fuel has been supplied into fuel tank; determining whether reforming is needed based on ignition timing when it is determined that fuel has been supplied; controlling operation of reform unit so as to reform fuel stored in fuel tank to supply to injector when it is determined that reforming is needed; and controlling operation of reform unit so as to supply fuel stored in fuel tank to injector without reforming when it is determined that reforming is not needed.
Abstract:
A combustion control apparatus for an internal combustion engine includes a spark plug for performing spark ignition of an air-fuel mixture in the combustion chamber, a plurality of coil pairs for generating spark discharge in the spark plug, and a fuel injection valve capable of injecting atomized fuel. Atomized fuel is injected into the intake passage, and a homogeneous lean air-fuel mixture is formed in the combustion chamber. The air-fuel ratio of the air-fuel mixture in the combustion chamber is controlled to be leaner than a predetermined lean air-fuel ratio. A spark discharge start timing and a spark discharge continuation time period are controlled using the plurality of coil pairs. The spark discharge start timing is set to a timing advanced from the spark discharge start timing for igniting a stratified lean mixture, such that the air-fuel ratio in the vicinity of the spark plug is relatively small.
Abstract:
A combustion control device for an engine capable of operation over a wide range and in which the NOx discharged amount is small is provided, as well as a combustion method for a homogeneous lean air/fuel mixture. The combustion method for a homogeneous lean air/fuel mixture of the present invention forms a homogeneous lean air/fuel mixture inside of the cylinder of the engine, and then causes this homogeneous lean air/fuel mixture to combust by way of spark ignition. A temperature at which a steep rise in a laminar burning velocity occurs when changing a cylinder temperature under a pressure condition corresponding to compression top dead center is defined as an inflection-point temperature. With the combustion method of the present invention, the cylinder temperature at compression top dead center inside of the cylinder is raised to higher than the inflection-point temperature upon combusting the homogeneous lean air/fuel mixture.