Abstract:
The embodiments described herein can provide systems and methods for combining traditional navigational data with temporary updates. Such a system and method can facilitate the inclusion of temporary navigational events into the navigational data made available on aircraft flight management system (FMS). For example, the systems and methods can be used to combine Aeronautical Information Regulation and Control (AIRAC) navigational data that is traditionally updated on 28 day cycles, with temporary navigational data changes, such as those typically indicated in “Notices to Airmen” (NOTAM). The combined navigational dataset can then be provided to the FMS.
Abstract:
A method for providing air traffic control (ATC) message data onboard an aircraft is provided. The method identifies ATC commands associated with text-based messages, by at least one processor onboard the aircraft, wherein the ATC commands comprise instructions to follow one or more particular procedures associated with the ATC audio messages and the ATC direct text messages; identifies, by the at least one processor, graphical content associated with the ATC commands; and presents an ATC graphical rendering environment comprising at least the graphical content, via at least one aircraft onboard display communicatively coupled to the at least one processor.
Abstract:
Methods and systems are provided for classifying notice to airmen (NOTAM) alerts to a pilot of an aircraft. First, bundled NOTAMs are received during the flight planning process for the aircraft. A domain rules set for a filter engine on board the aircraft is created that prioritizes the bundled NOTAMs based on their criticality. The domain rules set is updated with weather data and day/night visibility analysis. The prioritized critical NOTAMs are stored on board in an electronic database and retrieved during the relevant phase of the flight path of the aircraft. The NOTAM messages are then displayed to the pilot on a graphical display device on board the aircraft.
Abstract:
A method for providing air traffic control (ATC) message data onboard an aircraft is provided. The method identifies ATC commands associated with text-based messages, by at least one processor onboard the aircraft, wherein the ATC commands comprise instructions to follow one or more particular procedures associated with the ATC audio messages and the ATC direct text messages; identifies, by the at least one processor, graphical content associated with the ATC commands; and presents an ATC graphical rendering environment comprising at least the graphical content, via at least one aircraft onboard display communicatively coupled to the at least one processor.
Abstract:
A method and system are provided to generate aerodrome surface area node-link graphs. The terminal area network generator provided constructs terminal area networks from reliable terminal area node-links that do not require further manual processing. The exemplary embodiment is compatible with the AIRAC cycle.
Abstract:
A method and system are provided to generate aerodrome surface area node-link graphs. The terminal area network generator provided constructs terminal area networks from reliable terminal area node-links that do not require further manual processing. The exemplary embodiment is compatible with the AIRAC cycle.
Abstract:
A method of monitoring network traffic of a connected vehicle. The method includes receiving network traffic information from a vehicle gateway, the network traffic information including malicious and/or benign information. The method also includes storing the network traffic information on a data server and periodically updating the network traffic information stored on the data server. The method further includes: pre-processing the network traffic information, the pre-processing the network traffic information including filtering and normalizing the network traffic information; generating a learning model based on the pre-processed network traffic information, the learning model being generated by an artificial intelligence learning; updating the learning model based on additional network traffic information, the additional network traffic information including real-time network data; in accordance with the updated learning model, detecting an anomaly event in the incoming network data; and generating a notification and/or blocking one or more packets associated with the incoming network data.
Abstract:
A system for detecting aircraft trajectory anomalies during takeoff or landing is configured to: identify, from a clearance message directed to a first aircraft, an approved runway and an approved landing or takeoff procedure; select a runway-specific trained model appropriate for the approved procedure, the selected trained model having been trained with historical track data from other aircraft performing the approved procedure in connection with the approved runway, the selected trained model configured to provide an expected trajectory for an aircraft during performance of the approved procedure in connection with the approved runway; receive aircraft state information from the first aircraft during performance of the approved procedure; monitor and compare the received aircraft state information to the expected trajectory from the trained model; identify an anomaly and generate an alert when the trajectory of the first aircraft deviates from the expected trajectory by more than a predetermined threshold level.
Abstract:
A system and method for determining an optimum flight slot for an aircraft are provided. The method, for example, may include, but is not limited to, receiving flight plan input data from a client device, generating a flight plan based upon the flight plan input data, the flight plan including a plurality of fixes, determining a plurality of time slots based upon the flight plan input data, determining a traffic density for each fix along the flight plan for each of the plurality of slots, the traffic density based upon a number of aircraft within a bounding area containing each respective fix, determining the optimum flight time slot from the plurality of time slots based upon a weighted summation of the traffic density for each fix along the flight plan for each of the plurality of slots, and transmitting the optimum flight time slot to the client device.
Abstract:
A system and method for determining an optimum flight slot for an aircraft are provided. The method, for example, may include, but is not limited to, receiving flight plan input data from a client device, generating a flight plan based upon the flight plan input data, the flight plan including a plurality of fixes, determining a plurality of time slots based upon the flight plan input data, determining a traffic density for each fix along the flight plan for each of the plurality of slots, the traffic density based upon a number of aircraft within a bounding area containing each respective fix, determining the optimum flight time slot from the plurality of time slots based upon a weighted summation of the traffic density for each fix along the flight plan for each of the plurality of slots, and transmitting the optimum flight time slot to the client device.