Abstract:
Methods are provided for presenting procedure information for an airport on a display device onboard an aircraft. A method comprises displaying a map on a display device and displaying a briefing panel overlying a portion the map. The briefing panel includes a plurality of segments, wherein each segment is associated with a type of procedure information for the airport.
Abstract:
Methods and apparatus are provided for displaying the operational parameters of a radio system located onboard an aircraft. The apparatus comprises a permanent radio display bar that shows an active radio frequency in use by the radio system and a variable radio display pad. The variable radio display pad shows multiple historical past radio frequencies previously used by the radio system and multiple predicted future radio frequencies for use along a flight plan of the aircraft. It includes a change command that allows a crew member to manually change the active radio frequency in the permanent radio display bar.
Abstract:
An aircraft flight control system and method are provided. The system provides a control module that receives inertial data, sensor data, and a target airspeed. The control module processes the received data with aircraft thrust and drag models to evaluate the aircraft energy state. Based on the aircraft energy state, the control module determines (i) a maximum predicted potential flight path “max PPFP”, defined by a maximum thrust at the target airspeed, and (ii) an idle predicted potential flight path, “idle PPFP,” defined by an idle thrust at the target airspeed. The control module generates display commands for a display system to display (i) the flight path angle, (ii) the max PPFP and (iii) the idle PPFP. In addition, the control module generates and displays a predicted flight path speed indicator (PFPS) when the FPA is above the max PPFP or below the idle PPFP.
Abstract:
Methods and systems are provided for displaying a taxi clearance for an aircraft at an airport. One exemplary method involves receiving user input indicative of a constraining taxi path of a plurality of taxi paths at the airport, determining a first taxi portion between an initial location for the taxi clearance and the constraining taxi path, determining a second taxi portion between the constraining taxi path and a destination location for the taxi clearance, and displaying, on a display device associated with the aircraft, a taxi route comprising the first taxi portion, the second taxi portion, and the constraining taxi path between the first taxi portion and the second taxi portion.
Abstract:
A display system and method for graphically representing a host aircraft comprises a display, a first source host aircraft position data and a second source of data representative of airspace in the vicinity of the host aircraft. A processor is coupled to the display, the first source, and the second source and is configured to (1) determine a position of the host aircraft that expands the visualization of an intended trajectory of the host aircraft, and (2) display the host aircraft at the position on the display.
Abstract:
A dynamic runway indicator is displayed overlying a conformal runway for assisting a pilot in completing an approach to landing on a runway. The dynamic runway indicator includes a polygon, that by changing position with respect to the conformal runway, provides advanced instrumentation cues to the pilot for adjusting the aircraft flight path to a normal, or recommended, path to the runway for landing, thereby assisting the pilot to improve the accuracy and safety of the approach and landing.
Abstract:
A system and method for validating data entry in response to an instruction received in an aircraft cockpit includes receiving, in an aircraft cockpit, an instruction that requires an aircraft pilot to manually enter a target value into an avionics system using an avionics system user interface. The received instruction is processed to determine the target value that should be set by the aircraft pilot using the avionics system user interface. Haptic feedback is to the avionics system user interface during the manual entry by the aircraft pilot.
Abstract:
Methods and apparatus are provided for displaying the operational parameters of a radio system located onboard an aircraft. The apparatus comprises a permanent radio display bar that shows an active radio frequency in use by the radio system and a variable radio display pad. The variable radio display pad shows multiple historical past radio frequencies previously used by the radio system and multiple predicted future radio frequencies for use along a flight plan of the aircraft. It includes a change command that allows a crew member to manually change the active radio frequency in the permanent radio display bar.
Abstract:
A switching system comprises a three-way radio switch for an onboard radio system. The radio switch includes a manual standby frequency switch that receives and displays a standby frequency input by a user; an automated standby frequency switch that receives and displays a standby frequency automatically input by the system; and an active frequency switch that shows a currently selected frequency. The active frequency switch receives and displays the frequency from the manual standby frequency switch, or receives and displays the frequency from the automated standby frequency switch. A processor is operative to monitor frequencies of the radio system in real-time; compare the frequencies of the radio system with frequencies from a database containing regional radio frequencies; trigger an alert when the frequencies of the radio system do not match the frequencies from the database; and send an updated standby radio frequency to the automated standby frequency switch.
Abstract:
An aircraft flight control system and method are provided. The system provides a control module that receives inertial data, sensor data, and a target airspeed. The control module processes the received data with aircraft thrust and drag models to evaluate the aircraft energy state. Based on the aircraft energy state, the control module determines (i) a maximum predicted potential flight path “max PPFP”, defined by a maximum thrust at the target airspeed, and (ii) an idle predicted potential flight path, “idle PPFP,” defined by an idle thrust at the target airspeed. The control module generates display commands for a display system to display (i) the flight path angle, (ii) the max PPFP and (iii) the idle PPFP. In addition, the control module generates and displays a predicted flight path speed indicator (PFPS) when the FPA is above the max PPFP or below the idle PPFP.