Systems and methods for turbine engine particle separation

    公开(公告)号:US10816014B2

    公开(公告)日:2020-10-27

    申请号:US16044704

    申请日:2018-07-25

    Abstract: A turbine engine incorporating a fine particle separation means. The turbine engine includes: a compressor, a diffuser, and a flow path positioned downstream from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc that redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the extraction slot also being positioned downstream axially along the flow path from the arc. The turbine engine further includes an aspiration slot, downstream from the extraction slot, that allows air from the plenum to recirculate back into the flow path.

    Diffuser and deswirl system with integral tangential onboard injector for engine

    公开(公告)号:US11732731B2

    公开(公告)日:2023-08-22

    申请号:US17450306

    申请日:2021-10-08

    CPC classification number: F04D29/441 F04D17/10 F04D29/667

    Abstract: A diffuser and deswirl system associated with an engine includes a throat ring defining a plurality of passages spaced apart about a perimeter of the throat ring, a plurality of pockets and a support flange. Each passage of the plurality of passages is to receive a working fluid and each pocket of the plurality of pockets is defined about a portion of a respective passage of the plurality of passages. The diffuser and deswirl system includes a plurality of conduits, with each conduit including a first conduit end and a second conduit end opposite the first conduit end. The first conduit end of each conduit is received within and coupled to the pocket of a respective one of the plurality of passages to receive the working fluid, and each conduit includes a mating feature defined between the first conduit end and the second conduit end coupled to the support flange.

    HIGH PERFORMANCE WEDGE DIFFUSERS FOR COMPRESSION SYSTEMS

    公开(公告)号:US20210079929A1

    公开(公告)日:2021-03-18

    申请号:US16951258

    申请日:2020-11-18

    Abstract: High performance wedge diffusers utilized within compression systems, such as centrifugal and mixed-flow compression systems employed within gas turbine engines, are provided. In embodiments, the wedge diffuser includes a diffuser flowbody and tapered diffuser vanes, which are contained in the diffuser flowbody and which partition or separate diffuser flow passages or channels extending through the flowbody. The diffuser flow channels include, in turn, flow channel inlets formed in an inner peripheral portion of the diffuser flowbody, flow channel outlets formed in an outer peripheral portion of the diffuser flowbody, and flow channel throats fluidly coupled between the flow channel inlets and the flow channel outlets. The diffuser vanes include a first plurality of vane sidewalls, which transition from linear sidewall geometries to non-linear sidewall geometries at locations between the flow channel inlets and the flow channel outlets.

    DIFFUSER ASSEMBLIES FOR COMPRESSION SYSTEMS
    17.
    发明申请

    公开(公告)号:US20200248712A1

    公开(公告)日:2020-08-06

    申请号:US16266484

    申请日:2019-02-04

    Abstract: Circumferentially-split diffuser assemblies utilized within compression systems, such as centrifugal and mixed-flow compression systems employed within gas turbine engines, are provided. In embodiments, the diffuser assembly includes flow passages, which extend through the diffuser assembly and which include diffuser flow passage sections. Diffuser airfoils are interspersed with the diffuser flow passage sections. The diffuser airfoils include inboard and outboard airfoil segments distributed around a diffuser assembly centerline. The inboard and outboard airfoil segments are contained in and, thus, defined by inner and outer annular diffuser structures, respectively. The outer annular diffuser structure circumscribes the inner annular diffuser structure. In certain cases, the inboard airfoil segments and at least a portion of inner annular diffuser structure are composed of a first material, while the outboard airfoil segments and at least a portion of outboard annular diffuser structure are composed of a second material different than the first material.

    HIGH PERFORMANCE WEDGE DIFFUSERS FOR COMPRESSION SYSTEMS

    公开(公告)号:US20200166049A1

    公开(公告)日:2020-05-28

    申请号:US16201699

    申请日:2018-11-27

    Abstract: High performance wedge diffusers utilized within compression systems, such as centrifugal and mixed-flow compression systems employed within gas turbine engines, are provided. In embodiments, the wedge diffuser includes a diffuser flowbody and tapered diffuser vanes, which are contained in the diffuser flowbody and which partition or separate diffuser flow passages or channels extending through the flowbody. The diffuser flow channels include, in turn, flow channel inlets formed in an inner peripheral portion of the diffuser flowbody, flow channel outlets formed in an outer peripheral portion of the diffuser flowbody, and flow channel throats fluidly coupled between the flow channel inlets and the flow channel outlets. The diffuser vanes include a first plurality of vane sidewalls, which transition from linear sidewall geometries to non-linear sidewall geometries at locations between the flow channel inlets and the flow channel outlets.

    SYSTEMS AND METHODS FOR TURBINE ENGINE PARTICLE SEPARATION

    公开(公告)号:US20200032818A1

    公开(公告)日:2020-01-30

    申请号:US16044704

    申请日:2018-07-25

    Abstract: A turbine engine incorporating a fine particle separation means. The turbine engine includes: a compressor, a diffuser, and a flow path positioned downstream from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc that redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the extraction slot also being positioned downstream axially along the flow path from the arc. The turbine engine further includes an aspiration slot, downstream from the extraction slot, that allows air from the plenum to recirculate back into the flow path.

Patent Agency Ranking