Abstract:
A system and method are provided for controlling operations of an enhanced ground proximity warning system (EGPWS) disposed within an aircraft that is configured to selectively operate in both a helicopter mode and a fixed-wing mode. A processor processes one or more aircraft flight parameters to determine when the aircraft is operating in the helicopter mode and when the aircraft is operating in the fixed-wing mode. The EGPWS is commanded, via the processor, to operate as a helicopter EGPWS when the aircraft is operating in the helicopter mode, and is commanded, via the processor, to operate as a fixed-wing EGPWS when the aircraft is operating in the fixed-wing mode.
Abstract:
Methods and apparatus are provided for generating a runway landing alert for an aircraft. The method comprises establishing a Runway Awareness Advisory System (RAAS) envelope for the designated target runway of the aircraft. A track of the aircraft is monitored with reference to a centerline of the target runway. Any deviation by the aircraft from the centerline of the target runway is detected and determined if it is within a margin of error. If the deviation is within the margin of error, an altitude parameter of the RAAS envelope is increased. If the aircraft is determined to still be maneuvering with respect to the centerline of the target runway, the altitude parameter of the RAAS envelope is decreased. Otherwise, an alert is generated if the aircraft is outside of the RAAS envelope.
Abstract:
A system and method of shifting a premature descent protection envelope for an aircraft has been developed. First, a premature descent protection envelope (PDP) is determined including a first boundary at a first distance from the runway. Next, a nominal approach path is determined for approaching the runway and an approach path angle. Also, a flight path angle of the aircraft is determined. The first boundary is shifted in an upward direction from the runway in response to the aircraft being below the nominal approach path, and the flight path angle being greater than the nominal approach path angle.
Abstract:
A method for managing a premature descent envelope during descent of an aircraft is provided. The method receives glideslope deviation data by an instrument landing system (ILS) onboard the aircraft; compares, by the ILS, the glideslope deviation data to an acceptable band of glideslope deviation values; and when the glideslope deviation data is within the acceptable band, expands, by a terrain awareness and warning system (TAWS), the premature descent envelope to produce an increased premature descent envelope for the aircraft.
Abstract:
A system and method for alerting a helicopter pilot to an undesirable operating condition during landing operations are provided. Avionics data are supplied from an avionics data source. A controller coupled to receive at least a portion of the avionics data from the avionics data source is configured, upon receipt of the avionics data, to determine when the undesirable operating condition exists and, upon determining that the undesirable operating condition exists, to generate an alert signal that provides notification to the helicopter pilot to increase helicopter airspeed.
Abstract:
A system and method to display, when within an envelope of an ownship's flight path, a symbol representing wake turbulence from another aircraft based on aircraft type and flight parameters received from the other aircraft, the symbol being formatted to indicate the severity of portions of the wake turbulence. The format is modified periodically in accordance with the aircraft's flight path and a decay rate of the wake turbulence.
Abstract:
A system and method are provided for alerting of remaining runway based on deceleration, following, for example, a landing or discontinued takeoff. An advisory system compares the current aircraft deceleration value to a predetermined threshold value when proceeding down the runway. If the current aircraft deceleration is less than the threshold value, the runway distance remaining callouts are triggered.
Abstract:
An avionic system for a rotorcraft includes a data source and an enhanced ground proximity warning system. The data source has terrain data and obstacle data stored therein. The enhanced ground proximity warning system can be selectively switched, by a pilot, to operate in either a normal mode or a desensitized mode. The enhanced ground proximity warning system receives flight data, retrieves terrain data and obstacle data from the data source, evaluates the retrieved terrain data and the obstacle data to determine variations in elevations of terrain and obstacles in predetermined area that is a predetermined distance ahead of the current position and along the flight path, and based at least in part on the determined variations, selectively generate a prompt that suggests that the pilot switch the ground proximity warning system to the desensitized mode.
Abstract:
A runway overrun prediction system for an aircraft includes a doppler wind measurement system and a runway overrun awareness and alerting system (ROAAS). The doppler wind measurement system is disposed at least partially within the aircraft. The doppler wind measurement system is configured to continuously measure a doppler signature of a wind field over an estimated touchdown zone on a runway ahead of the aircraft and supply wind data representative of the doppler signature. The ROAAS is disposed within the aircraft and is configured to determine a ROAAS model distance (RMD) for the aircraft. The ROAAS is in operable communication with the doppler wind measurement system and is coupled to receive the wind data therefrom. The ROAAS is further configured, upon receipt of the wind data, to adjust the RMD for the aircraft based on the wind data.
Abstract:
A system and method of shifting a premature descent protection envelope for an aircraft has been developed. First, a premature descent protection envelope (PDP) is determined including a first boundary at a first distance from the runway. Next, a nominal approach path is determined for approaching the runway and an approach path angle. Also, a flight path angle of the aircraft is determined. The first boundary is shifted in an upward direction from the runway in response to the aircraft being below the nominal approach path, and the flight path angle being greater than the nominal approach path angle.