Abstract:
A data sending method includes a first device obtaining resource allocation information of a current access cycle, where the resource allocation information indicates start time and duration of a first period; when detecting, at first time, that a channel is idle, the first device starts to wait for first duration; and after the first duration ends, the first device sends first data over the channel, where the first data is data that is to be sent by the first device in specific time.
Abstract:
This application provides an uplink multi-station channel estimation method, a station (STA), and an access point (AP), which can be applied to an uplink multi-user multiple-input multiple-output scenario. The uplink multi-station channel estimation method includes: a STA generating a frame including a first group of training sequences and a second group of training sequences, and sending the frame to the AP. The AP calculates a frequency offset value between the STA and the AP based on the received first group of training sequences and the received second group of training sequences. The AP performs channel estimation based on the calculated frequency offset value. According to the technical solutions provided in this application, the AP can more accurately learn of frequency offset values between a plurality of STAs and the AP. This improves channel estimation precision.
Abstract:
Embodiments disclose a blood pressure parameter detection method. The method includes: detecting, by user equipment UE, an electrocardiogram ECG signal of a user by using a first ECG contact and a second ECG contact that are connected to an ECG detection circuit of the UE; when determining that the detected ECG signal matches a pre-stored reference ECG signal, enabling, by the UE, a photoplethysmogram PPG detection circuit, and detecting a PPG signal of the user by using a PPG detection point connected to the PPG detection circuit; and when determining that the detected PPG signal matches a pre-stored reference PPG signal, enabling, by the UE, a blood pressure detection application, and processing the detected ECG signal and the detected PPG signal by using the blood pressure detection application to obtain a blood pressure parameter of the user.
Abstract:
A communications device includes: a processor, configured to determine a quantity of first idle channels; and a transmitter, configured to send data to a receiving end on each of the first idle channels; wherein the processor is further configured to: determine whether the data is to be resent; and if the data is to be resent, cause the transmitter to resend the data; and continue to determine whether the data is to be resent and, if the data is to be resent, re-determine the quantity of first idle channels and cause the transmitter to resend the data.
Abstract:
Embodiments of the present disclosure provide a base station and a beam coverage method, which can improve a service capacity of a communications system. The base station includes: an antenna and at least two data transmission paths, where a data converter and a beamformer are disposed on each data transmission path; the antenna includes a beam aggregation structure and at least one antenna bay, the beam aggregation structure includes at least one antenna aperture, one beamformer is correspondingly connected to one antenna bay, one antenna bay uses at least one antenna aperture in the beam aggregation structure to receive and send a beam, and a multiplexer is further disposed on the at least two data transmission paths; and the multiplexer is configured to set a data transmission path of a to-be-transmitted signal or a radiation signal. The embodiments of the present disclosure are used for beam coverage.
Abstract:
A fiber patch cord apparatus and a port panel, which may simplify a structure of the fiber patch cord system. The fiber patch cord apparatus includes a crawler configured to move to a corresponding position of a source adapter port along a crawling guide rail provided by a port panel, a clamper configured to clamp a fiber patch cord on the source adapter port, and a puller and inserter configured to pull the fiber patch cord out of the source adapter port and a controller that is configured to control the fiber patch cord apparatus to move on a crawling guide rail, where the controller is further configured to control a mold strip group on the port panel to move. The embodiments of the present invention are used to pull and insert a fiber patch cord.
Abstract:
A method for managing uplink carrier frequencies is provided, which is applicable to the field of communication. The method includes the following steps: A state switching response message sent by a UE is received, where the state switching response message includes a result of state switching performed by on a secondary uplink carrier serving cell; The result of the state switching is notified to a secondary uplink carrier non-serving cell in a secondary carrier active set through an RNC. A device and a system for managing uplink carrier frequencies are further provided. Through the method, device, and system provided in embodiments of the present invention, the uplink carrier frequencies are managed, so as to facilitate transmission of uplink data during multi-cell collaboration.
Abstract:
The present disclosure relates to telecommunication, and in particular, to a base station Radio Frequency (RF) duplexer, an RF module, and an RF system. A base station RF apparatus provided herein includes: an enclosure, an intermediate RF processing unit, and a duplexer. The enclosure is located on the duplexer; the intermediate RF processing unit is located inside a cavity enclosed by the enclosure and the duplexer, or on the duplexer; a duplexer cavity and a heat dissipation part exist on the surface of the duplexer; the opening of the duplexer cavity is opposite to or against the enclosure; the heat dissipation part is designed to dissipate heat of the intermediate RF processing unit; and the duplexer is integrally molded. The foregoing technical solution requires no external fasteners, reduces the time of production and assembly. In addition, waterproof design and shielding design are not required, and thus improves the reliability.
Abstract:
In accordance with an embodiment, a control method, applied to a wearable device comprising a housing and a movement detachably mounted in the housing, includes: obtaining, by the movement, first information in response to a first operation for the wearable device, wherein the first information is related to the housing, and the first operation comprises mounting the movement in the housing; and controlling, by the movement based on the first information, a color or a display interface of the wearable device to change correspondingly.
Abstract:
This application discloses a channel sounding method and a communication apparatus. The method includes: A first access point receives a channel transfer command frame from a controller or a central access point, and sends a channel transfer frame to a second access point. The channel transfer command frame indicates the first access point to send a channel sounding result of at least one station to the second access point. The channel transfer command frame includes a first sounding dialog token number. The channel transfer frame carries a channel sounding result corresponding to a first sounding dialog token in channel sounding results of a plurality of stations. The first access point forwards the channel sounding result of the at least one station to the second access point.