Abstract:
The present application discloses a signal processing apparatus and method, the method includes: receive an analog signal; adjust a frequency band of the analog signal to a lowest frequency band when a frequency band of the analog signal received by the receiving unit falls outside the lowest frequency band in multiple preconfigured frequency bands; process, by using a signal processing channel in the lowest frequency band, the analog signal whose frequency band has been adjusted to the lowest frequency band. The method provided in the embodiments of the present application processes signals of different frequency bands by using a processing channel in a lowest frequency band. In this way, only a relatively small quantity of radio-frequency link components are required to implement processing of the signals of the different frequency bands, which reduces a link size of a communications system.
Abstract:
An antenna system and a processing method are provided. The antenna system includes a focus device and a multi-band feeding antenna array that is disposed in a focus area of the focus device, where the multi-band feeding antenna array includes antenna arrays on at least two frequency bands, the antenna arrays on the at least two frequency bands include at least an antenna array on a first target frequency band, the antenna array on the first target frequency band includes multiple feeding units that are arranged in a form of a non-one-dimensional linear array; the multi-band feeding antenna array is configured to radiate a first beam, where the first beam points to the focus device, and sub-beams separately generated by the antenna arrays on the at least two frequency bands constitute the first beam.
Abstract:
The present application discloses a sensing screen, a control circuit and control method thereof, and a sensing screen apparatus. The sensing screen includes a display screen, a first transparent medium layer, a transparent connection layer, and an antenna layer. The antenna layer includes multiple antenna units, and the antenna units include at least one first antenna unit and multiple second antenna units. The first antenna unit is configured to transmit a sensing signal, the second antenna units are configured to receive reflected signals of the sensing signal, and the reflected signals are generated by a touch object by reflecting the sensing signal. According to the present application, the antenna layer is arranged right above the display screen, so that a touch area of the sensing screen is fully utilized while screen display is not affected, so as to substantially increase an antenna size and increase an antenna gain.
Abstract:
The present application discloses an antenna and a wireless device. The antenna includes: a main body, where the main body includes a top board and a bottom board, where multiple radiation structures are provided on the top board and a feed structure is provided on the bottom board; and multiple gain compensation structures, for partitioning the main body to at least two radiation areas, where each gain compensation structure includes multiple gain compensation units and a shielding structure, and the shielding structure is located between the top board and the bottom board. Each gain compensation unit includes: a first coupling structure located on a side that is of the shielding structure and that faces the feed structure, where at least a portion of the first coupling structure is located between the top board and the bottom board.
Abstract:
This application discloses a signal generating method, apparatus, and system. One example method includes: performing cyclic electro-optic modulation on a first signal to generate a first optical frequency comb signal, where the first signal is a signal output by a laser source, the first optical frequency comb signal includes a target spectral component, and a frequency of the target spectral component is equal to a sum of or a difference between a frequency of the first signal and a frequency of a target signal; performing first filtering processing on the first optical frequency comb signal to generate the target spectral component; and generating the target signal based on a heterodyne beat frequency of the first signal and the target spectral component.
Abstract:
A method for processing an uplink reference signal includes determining a current baseband processing payload, and processing each of N received uplink reference signals according to a preset first condition in response to the baseband processing payload being less than a first preset value or processing each uplink reference signal in a signal set according to a preset second condition in response to the baseband processing payload being greater than a second preset value. The second preset value is greater than or equal to the first preset value. The signal set includes one or more of the N uplink reference signals. A baseband processing payload corresponding to processing an uplink reference signal according to the preset second condition is less than a baseband processing payload corresponding to processing an uplink reference signal according to the preset first condition. N is a positive integer.
Abstract:
The present application discloses a signal processing apparatus and method, the method includes: receive an analog signal; adjust a frequency band of the analog signal to a lowest frequency band when a frequency band of the analog signal received by the receiving unit falls outside the lowest frequency band in multiple preconfigured frequency bands; process, by using a signal processing channel in the lowest frequency band, the analog signal whose frequency band has been adjusted to the lowest frequency band. The method provided in the embodiments of the present application processes signals of different frequency bands by using a processing channel in a lowest frequency band. In this way, only a relatively small quantity of radio-frequency link components are required to implement processing of the signals of the different frequency bands, which reduces a link size of a communications system.
Abstract:
Embodiments of the present disclosure provide a base station and a beam coverage method, which can improve a service capacity of a communications system. The base station includes: an antenna and at least two data transmission paths, where a data converter and a beamformer are disposed on each data transmission path; the antenna includes a beam aggregation structure and at least one antenna bay, the beam aggregation structure includes at least one antenna aperture, one beamformer is correspondingly connected to one antenna bay, one antenna bay uses at least one antenna aperture in the beam aggregation structure to receive and send a beam, and a multiplexer is further disposed on the at least two data transmission paths; and the multiplexer is configured to set a data transmission path of a to-be-transmitted signal or a radiation signal. The embodiments of the present disclosure are used for beam coverage.
Abstract:
An apparatus for implementing digital baseband predistortion includes a transmission channel including a digital-to-analog converter, a modulator, an amplifier and a power amplifier, and further includes a feedback channel analog part including a diode detector, a filter and an analog-to-digital converter, and a feedback channel digital part including a predistorter, a mode obtaining unit, a predistortion coefficient generator and a feedback correcting unit. The diode detector is configured to obtain an envelope of an output signal of the power amplifier. Embodiments of the present invention further provide a method for implementing digital baseband predistortion by applying the foregoing single-chip. Due to a simple structure of the diode detector, not only the number of radio frequency devices on the feedback channel is reduced, implementation complexity of hardware is lowered, power consumption is reduced, but also a feedback channel analog part may be integrated onto the single-chip.
Abstract:
The present application discloses a sensing screen, a control circuit and control method thereof, and a sensing screen apparatus. The sensing screen includes a display screen, a first transparent medium layer, a transparent connection layer, and an antenna layer. The antenna layer includes multiple antenna units, and the antenna units include at least one first antenna unit and multiple second antenna units. The first antenna unit is configured to transmit a sensing signal, the second antenna units are configured to receive reflected signals of the sensing signal, and the reflected signals are generated by a touch object by reflecting the sensing signal. According to the present application, the antenna layer is arranged right above the display screen, so that a touch area of the sensing screen is fully utilized while screen display is not affected, so as to substantially increase an antenna size and increase an antenna gain.