Abstract:
A thermoelectric generation structure for a vehicle is provided. The structure includes an exhaust manifold into which exhaust gas is introduced and a cover that is disposed within the exhaust manifold and provided with a cooling water microchannel to perform cooling. A magnetic thermoelectric material is mounted between the cover and the exhaust manifold to generate electricity. Additionally, the magnetic thermoelectric material having an adjustable size and shape is used in the thermoelectric generation device by being mounted in the exhaust manifold of the vehicle to minimize the weight and volume to improve the marketability. The electricity is generated by the magnetic thermoelectric material using the spin seebeck phenomenon to improve the fuel efficiency.
Abstract:
A thermoelectric generation apparatus for a vehicle using waste heat of an engine is provided. The thermoelectric generation apparatus includes a conduction block that has a high thermal conductivity and is disposed between an engine and an exhaust manifold. A first thermoelectric element module is configured to generate an electromotive force from a difference between temperatures of opposite ends of the first thermo electric element. In addition, the first thermoelectric element is disposed at one side of the conduction block. Accordingly, thermoelectric generation efficiency of the first thermoelectric element module is increased by minimizing heat loss of the waste heat gas discharged from the engine.
Abstract:
A device for generating a digital random encryption key includes an input unit adding a non-volatile active element for overcoming a limit of a passive element when generating an encryption key, applying a random passive filter, and inputting an analog voltage signal to an encryption key generator, an encryption key generator including a non-volatile active element and a passive filter, connected to the input unit through a connection substrate, and generating a random encryption key from an entropy source, and a converter for converting a signal generated by the encryption key generator into a digital signal and outputting the digital signal is provided, thereby improving robustness of security compared to the case of applying the general passive element, allowing regeneration or random generation, and generating an excellent encryption key working excellently for physical reverse engineering violations.
Abstract:
Provided is a thermoelectric generating system which may be easily installed in a heat source of a vehicle and which is easy to assemble and disassemble overall by eliminating the necessity to be assembled with a cooling module. The thermoelectric generating system includes a first substrate, a second substrate configured to be slidably engageable in contiguity with a heat source of a vehicle, and a thermoelectric module disposed between the first substrate and the second substrate.
Abstract:
A thermoelectric generation apparatus includes a heat absorbing surface configured to absorb heat from an internal combustion engine, a heat generating surface bonded to the heat absorbing surface by a semiconductor and configured to discharge the heat to the outside, and a conductive converting part interposed between the heat absorbing surface and the internal combustion engine. The conductive converting part is configured to allow the heat to be conducted from the internal combustion engine to the heat absorbing surface when a temperature of the internal combustion engine is equal to or greater than a specific value.
Abstract:
A thermoelectric nanocomposite is provided. The thermoelectric nanocomposite includes: a matrix having n-type semiconductor characteristics and comprising Mg, Si, Al, and Bi components, and a nanoinclusion comprising Bi and Mg components. The thermoelectric nanocomposite has significantly increased thermoelectric energy conversion efficiency by simultaneously having an increased Seebeck coefficient and a decreased thermal conductivity, such that the thermoelectric nanocomposite is usefully used to implement a thermoelectric device having high efficiency.
Abstract:
Disclosed is a micro particle for a thermal control material capable of being applied as a highly thermal conductive material for thermal control, and an apparatus and a method of producing the micro particle for the thermal control material by using an ultrasonic high-temperature vibration scheme. More specifically, a Boron Nitride (BN) particle having a plate shape and an excellent thermal conductivity is coated on a PCM having a shape of a micro bead, to increase the thermal conduction to the inside PCM, so that a phase change is easily generated, and which allows an easy treatment of the PCM in a liquid state at a temperature equal to or higher than a melting point of the PCM.
Abstract:
The present disclosure provides a high heat radiation composite material including a hybrid filler comprising expanded graphite filled with expandable polymeric beads, and a fabrication method thereof. In the method, a dispersion solution is prepared by dispersing expandable polymeric beads in ethanol. Expanded graphite is immersed in the dispersion solution, and heat-treated to remove ethanol, thereby producing the hybrid filler. The hybrid filler is dispersed into the matrix polymer via an extrusion/injection process, thereby producing the composite material.
Abstract:
An apparatus for manufacturing a thermoelectric module is provided. The apparatus includes a thermoelectric element interposed between a lower substrate that includes a lower electrode and an upper substrate that includes an upper electrode. Additionally, the apparatus includes a first block that is configured to support the lower substrate and a second block that is configured to move vertically with respect to the first block and support the upper substrate. A jig is configured to position the thermoelectric element in connection with the upper electrode and the lower electrode.
Abstract:
An apparatus for manufacturing a thermoelectric module is provided. The thermoelectric module includes thermoelectric pellets, first electrodes, second electrodes, and an insulating substrate. The apparatus includes a fixing tray to which the thermoelectric module is fixed, a first die including a first heating member configured to heat a first adhesive layer, which is interposed between the thermoelectric pellets and the first electrodes. The fixing tray is mounted on the first die such that the insulating substrate faces the first heating member. A second die includes a second heating member configured to heat a second adhesive layer, which is interposed between the thermoelectric pellets and the second electrodes, the second die facing the second electrodes. A transfer unit is configured to transfer at least one of the first die and the second die to adjust a distance between the first die and the second die.