Abstract:
The method for coating a separator for a fuel cell according to one form of the present disclosure includes the steps of: vaporizing a metal nitride precursor to obtain a precursor gas; introducing a metal nitride coating layer-forming gas containing the precursor gas and a reactive gas to a reaction chamber; applying a voltage to the reaction chamber so that the precursor gas and reactive gas may be converted into a plasma state, thereby forming a metal nitride coating layer on a substrate; introducing a carbon layer-forming gas containing a carbonaceous gas to the reaction chamber; and applying a voltage to the reaction chamber so that the carbonaceous gas may be converted into a plasma state, thereby forming a carbon coating layer on the metal nitride coating layer.
Abstract:
A thermoelectric module mounted on an uneven surface (a curved surface or an irregular surface) to reduce thermal boundary resistance and significantly improve thermoelectric power generation efficiency is provided. The thermoelectric module includes one or more first thermoelectric elements, one or more second thermoelectric elements having opposite polarity to that of the first thermoelectric elements and alternating with the first thermoelectric element. An electrode unit in provided and includes upper and lower electrodes configured to electrically connect the first and second thermoelectric elements. A connection member is configured to connect the first and second thermoelectric elements to vary the relative positions of the first and second thermoelectric elements.
Abstract:
A thermoelectric module mounted on an uneven surface (a curved surface or an irregular surface) to reduce thermal boundary resistance and significantly improve thermoelectric power generation efficiency is provided. The thermoelectric module includes one or more first thermoelectric elements, one or more second thermoelectric elements having opposite polarity to that of the first thermoelectric elements and alternating with the first thermoelectric element. An electrode unit in provided and includes upper and lower electrodes configured to electrically connect the first and second thermoelectric elements. A connection member is configured to connect the first and second thermoelectric elements to vary the relative positions of the first and second thermoelectric elements.
Abstract:
A fuel reforming system for a vehicle intake and exhaust line that reforms fuel in a vehicle intake and exhaust line including an exhaust gas recirculation (EGR) apparatus that recirculates a portion of an exhaust gas of an engine and a recirculation line that transfers an exhaust gas that is recirculated by the exhaust gas recirculation apparatus to supply as an intake gas of the engine, may include a fuel reformer that mixes an exhaust gas that passes through the recirculation line with fuel and that reforms fuel that is mixed in the exhaust gas, wherein an insulation material is coated at a wall surface of the fuel reformer.
Abstract:
Disclosed is a method and apparatus for forming a coating layer using a physical vapor deposition apparatus equipped with a sputtering apparatus and an arc ion plating apparatus, comprising: a first coating step of forming a Mo coating layer on a base material using a the sputtering apparatus and a Mo target and Ar gas; a nitrating step of forming a nitride film forming condition using an arc ion plating apparatus and Ar gas and N2 gas; a second coating step of forming a nano composite coating layer of Cr—Mo—N using the Mo target and Ar gas of the sputtering apparatus and the Ar gas, N2 gas and a Cr source of the arc ion plating apparatus at the same time; and a multi-coating step of forming a multi-layer having alternating Cr—Mo—N nano composite coating layers and Mo coating layers by revolving the base material around a central pivot.
Abstract:
Disclosed herein is an after treatment device of an exhaust system for a vehicle. The after treatment device of an exhaust system for a vehicle is connected to an exhaust pipe and includes a canning main body in which a catalyst is received and may include a heat insulation coating layer formed on an inner wall surface of the canning main body.
Abstract:
A fuel cell separator includes a metal substrate having a surface; an ion penetration layer including carbon diffusion-inhibiting ions extending from the surface of the metal substrate into the metal substrate; and a carbon coating layer disposed on the surface of the metal substrate.
Abstract:
Provided is a thermoelectric generating system which may be easily installed in a heat source of a vehicle and which is easy to assemble and disassemble overall by eliminating the necessity to be assembled with a cooling module. The thermoelectric generating system includes a first substrate, a second substrate configured to be slidably engageable in contiguity with a heat source of a vehicle, and a thermoelectric module disposed between the first substrate and the second substrate.
Abstract:
Disclosed is a multi-layer coating formed by repeatedly and sequentially laminating first coating layers composed of TiN and second coating layers composed of TiAgN on a surface, and a method of forming the same.
Abstract:
Disclosed is a TiAgN coating layer, formed by subjecting a substrate having a surface roughness of about 0.05˜0.1 μm to plasma coating by periodically turning on/off an Ag source while a Ti source is continuously turned on in a nitrogen gas atmosphere, a TiAgN coating method, and a TiAgN coating apparatus.