摘要:
The method for coating a separator for a fuel cell according to one form of the present disclosure includes the steps of: vaporizing a metal nitride precursor to obtain a precursor gas; introducing a metal nitride coating layer-forming gas containing the precursor gas and a reactive gas to a reaction chamber; applying a voltage to the reaction chamber so that the precursor gas and reactive gas may be converted into a plasma state, thereby forming a metal nitride coating layer on a substrate; introducing a carbon layer-forming gas containing a carbonaceous gas to the reaction chamber; and applying a voltage to the reaction chamber so that the carbonaceous gas may be converted into a plasma state, thereby forming a carbon coating layer on the metal nitride coating layer.
摘要:
A method of measuring a friction coefficient of a surface of a specimen includes: obtaining surface information of the specimen by using an atomic force microscope (AFM); calculating data of a friction coefficient of the surface of the specimen by using the surface information of the specimen; and mapping the data of the friction coefficient of the specimen to an image. The method of measuring a friction coefficient of a surface of a specimen may prevent a probe part of an atomic force microscope from being worn out and secure high reliability of the friction coefficient value by correcting the atomic force microscope using a specimen to be actually measured and measuring a fiction coefficient at the same time.
摘要:
A method for coating a separator for a fuel cell is provided that includes vaporizing a metal carbide precursor to obtain a precursor gas; introducing a metal carbide coating layer-forming gas including the precursor gas in a reaction chamber; and applying a voltage to the reaction chamber so that the precursor gas is changed into a plasma state, thereby forming a metal carbide coating layer on either surface or both surfaces of a substrate. In this case, the metal carbide precursor may include a compound having a substituted or non-substituted cyclopentadienyl group.
摘要:
The present invention provides a porous polymer resin layer that comprises a binder resin with pores having a mean maximum diameter of about 0.5 mm to 1.6 mm; and aerogels dispersed in the binder resin. In particular, the porous polymer resin layer has a density of about 0.5 g/ml to 1.6 g/ml.
摘要:
Disclosed is a method and apparatus for forming a coating layer using a physical vapor deposition apparatus equipped with a sputtering apparatus and an arc ion plating apparatus, comprising: a first coating step of forming a Mo coating layer on a base material using a the sputtering apparatus and a Mo target and Ar gas; a nitrating step of forming a nitride film forming condition using an arc ion plating apparatus and Ar gas and N2 gas; a second coating step of forming a nano composite coating layer of Cr—Mo—N using the Mo target and Ar gas of the sputtering apparatus and the Ar gas, N2 gas and a Cr source of the arc ion plating apparatus at the same time; and a multi-coating step of forming a multi-layer having alternating Cr—Mo—N nano composite coating layers and Mo coating layers by revolving the base material around a central pivot.
摘要:
A method of measuring a friction coefficient of a surface of a specimen includes: obtaining surface information of the specimen by using an atomic force microscope (AFM); calculating data of a friction coefficient of the surface of the specimen by using the surface information of the specimen; and mapping the data of the friction coefficient of the specimen to an image. The method of measuring a friction coefficient of a surface of a specimen may prevent a probe part of an atomic force microscope from being worn out and secure high reliability of the friction coefficient value by correcting the atomic force microscope using a specimen to be actually measured and measuring a fiction coefficient at the same time.
摘要:
Disclosed is a TiAgN coating layer, which is coated by plasma coating method using nitrogen gas, a Ti source and a Ag source, the coating layer comprising Ag in the coating layer at an amount of about 15 at % or more, a TiAgN coating method, and a TiAgN coating apparatus therefor.
摘要:
Disclosed herein is a low friction coating layer wherein the uniform concentration of a low friction metal in the coating layer is increased by increasing a turning-on power of a low friction metal source to be higher than a turning-off power thereof, decreasing a turning-on power of a Ti source to be lower than a turning-off power thereof. Alternatively the concentration is increased by increasing a flow rate or temperature of a nitrogen atmosphere gas upon introduction to be higher than upon termination of the introduction thereof.
摘要:
The present invention provides a low-friction coating layer for vehicle components comprising: a Ti layer on a surface of a base material; a TiN layer on the Ti layer surface; a TiAgN layer on the TiN layer surface; and an Ag layer transferred on the TiAgN layer surface, and a method for producing the same.
摘要:
Disclosed is a TiAgN coating layer, formed by subjecting a substrate having a surface roughness of about 0.05˜0.1 μm to plasma coating by periodically turning on/off an Ag source while a Ti source is continuously turned on in a nitrogen gas atmosphere, a TiAgN coating method, and a TiAgN coating apparatus.