Abstract:
A method for controlling startup of a fuel cell vehicle is provided. The disclosed method includes detecting generation of a startup command from a vehicle and supplying hydrogen to a fuel cell by opening a hydrogen valve. Additionally, the method includes detecting whether a fuel cell voltage has increased after supply of hydrogen, and a first startup of consuming generated electric power of the fuel cell through connection of a load device to the fuel cell, supplying air to the fuel cell through opening an air valve and adjusting the fuel cell voltage to be maintained at a predetermined level or less through adjustment of a bus stage voltage of a power converter when the controller determines that the fuel cell voltage has increased after supply of hydrogen.
Abstract:
A control method of a cooling water pump of fuel cell vehicle is provided. The method includes comparing a derived temperature value, including a cooling water temperature of a fuel cell or an estimated temperature of a stack of the fuel cell, with predetermined temperature criteria and comparing a required output value of the stack of the fuel cell with predetermined output criteria. The cooling water pump is then operated in a normal mode when the derived temperature value is greater than the temperature criteria or when the required output value is greater than the output criteria. Additionally, the cooling water pump is operated in a stop mode when the derived temperature value is less than the temperature criteria and, simultaneously, when the required output value is less than the output criteria.
Abstract:
A control method and system of a fuel cell system is provided. The control method includes detecting, by a controller, a voltage of a fuel cell stack when power generation of a fuel cell is stopped while a fuel cell vehicle is being driven. In addition, hydrogen supply pressure at an anode side is adjusted based on a variation in the detected voltage.
Abstract:
An apparatus and method for controlling hydrogen purging are provided. The hydrogen purging control apparatus includes a purge valve that is disposed at an outlet on an anode side of a fuel cell stack and is configured to adjust an amount of emission of hydrogen containing impurities. Additionally, a controller is configured to adjust an opening and closing cycle of the purge valve based on a required output or an output current of the fuel cell stack.
Abstract:
A control method and system of a fuel cell system are provided. The control method includes draining the voltage of a fuel cell stack by charging a high voltage battery. In addition, the method includes draining the voltage of the fuel cell stack by connecting a fuel cell load device to the fuel cell stack, which is performed when the voltage of the fuel cell stack decreased by the first draining process is less than a predetermined first reference voltage.
Abstract:
Disclosed is a system and method for controlling a fuel cell system. More specifically, a fuel cell demand current is calculated based on a driver demand current calculated from a driver demand torque. Then a target flow rate-1 of air to be supplied to a fuel cell stack is calculated based on the fuel cell demand current and a target stoichiometric ratio (SR) of air. The target flow rate-1 is then compensated for using the target SR, an RPM command value of an air blower is calculated based on a compensated target flow rate-2 and the amount of air currently measured. The operation of the air blower is subsequently controlled based on the calculated RPM command value.
Abstract:
A method of controlling power of the fuel cell vehicle includes dividing an expected driving path of the fuel cell vehicle into a plurality of sections and setting the plurality of sections according to a gradient, and comparing whether a predicted battery state of charge variation is within a battery charging/discharging allowance range for each of the plurality of divided sections The method further includes comparing predicted power with a predetermined maximum allowance power for each of the plurality of divided sections, and setting the plurality of divided sections as a battery charging/discharging prohibition section and a battery charging/discharging allowance section in advance according to a result of the comparison of the predicted battery state of charge variation and the predicted power.
Abstract:
Disclosed is a method of controlling an operation mode of a fuel cell in a fuel cell vehicle wherein, (a) when a driver-demanded torque is lower than a first torque, and a current state of charge (SOC) in a battery is higher than a first SOC, the operation mode of the fuel cell is converted to a stop mode, and (b) when the driver-demanded torque is higher than a second torque, or the current SOC in the battery is lower than a second SOC, the operation mode is converted to a start mode, wherein the second torque is higher than the first torque and the second SOC is lower than the first SOC.
Abstract:
Disclosed is an apparatus and method that controls a coolant temperature of a fuel cell system, which can improve fuel efficiency by performing a multi-point temperature control based on the power of a vehicle, the outdoor temperature for each season, etc.
Abstract:
A driving control method and system of a fuel cell system are provided. The method includes determining, by a controller, a dry state of a fuel cell stack and stopping an air blower, which supplies air to the fuel cell stack, using different processes based on whether the fuel cell stack is in the dry state. Accordingly, the time for which an open circuit voltage (OCV) is maintained is reduced and durability of the fuel cell is improved by preventing dry-out of the fuel cell stack.