Abstract:
A carbon nanotube emitter and its fabrication method, a Field Emission Device (FED) using the carbon nanotube emitter and its fabrication method include a carbon nanotube emitter having a plurality of first carbon nanotubes arranged on a substrate and in parallel with the substrate, and a plurality of the second carbon nanotubes arranged on a surface of the first carbon nanotubes.
Abstract:
In a method of achieving uniform lengths of Carbon NanoTubes (CNTs) and a method of manufacturing a Field Emission Device (FED) using such CNTs, an organic film is coated to cover CNTs formed on a predetermined material layer. The organic film is etched to a predetermined depth to remove projected portions of the CNTs. After that, the organic film is removed.
Abstract:
A novel method of forming catalyst particles, on which carbon nanotubes grow based, on a substrate with increased uniformity, and a method of synthesizing carbon nanotubes having improved uniformity are provided. A catalytic metal precursor solution is applied to a substrate. The applied catalytic metal precursor solution is freeze-dried, and then reduced to catalytic metal. The method of forming catalyst particles can minimize agglomeration and/or recrystallization of catalyst particles when forming the catalyst particles by freeze-drying the catalyst metal precursor solution. The catalyst particles formed by the method has a very uniform particle size and are very uniformly distributed on the substrate.
Abstract:
A carbon-nano tube (CNT) structure comprises a substrate and a plurality of CNTs, each CNT comprising a plurality of first CNTs grown perpendicular to the substrate and a plurality of second CNTs grown on sidewalls of the first CNTs. A method of manufacturing CNTs includes growing first CNTs on a substrate on which a catalyst material layer is formed, and growing second CNTs on surfaces of the first CNTs from a catalyst material on surfaces of the first CNTs. The second CNTs grown on the sidewalls of the first CNTs emit electrons at a low voltage. In addition, the CNT structure exhibits high electron emission current due to the second CNTs being used as electron emission sources, and exhibits uniform field emission due to the uniform diameter of the first CNTs. A display device incorporates the above-described structure.
Abstract:
A carbon-nano tube (CNT) structure comprises a substrate and a plurality of CNTs, each CNT comprising a plurality of first CNTs grown perpendicular to the substrate and a plurality of second CNTs grown on sidewalls of the first CNTs. A method of manufacturing CNTs includes growing first CNTs on a substrate on which a catalyst material layer is formed, and growing second CNTs on surfaces of the first CNTs from a catalyst material on surfaces of the first CNTs. The second CNTs grown on the sidewalls of the first CNTs emit electrons at a low voltage. In addition, the CNT structure exhibits high electron emission current due to the second CNTs being used as electron emission sources, and exhibits uniform field emission due to the uniform diameter of the first CNTs. A display device incorporates the above-described structure.
Abstract:
A method of forming a Carbon NanoTube (CNT) structure and a method of manufacturing a Field Emission Device (FED) using the method of forming a CNT structure includes: forming an electrode on a substrate, forming a buffer layer on the electrode, forming a catalyst layer in a particle shape on the buffer layer, etching the buffer layer exposed through the catalyst layer, and growing CNTs from the catalyst layer formed on the etched buffer layer.
Abstract:
A Field Emission Display (FED) and a method of manufacturing the FED are provided. The FED includes a substrate; a plurality of under-gate electrodes formed parallel to one another on a top surface of a substrate; a plurality of cathode electrodes formed perpendicular to the under-gate electrodes on an upper portion of the under-gate electrode, each of cathode holes being formed in portions of the cathode electrodes that intersect with the under-gate electrodes; a plurality of emitters formed symmetrical with respect to centers of the cathode holes on the cathode electrodes; and a plurality of gate electrodes formed to be electrically connected to the under-gate electrodes in central portions of the cathode holes.
Abstract:
Methods of growing carbon nanotubes and manufacturing a field emission device using the carbon nanotubes are provided. The method of growing carbon nanotubes includes the steps of preparing a substrate, forming a catalyst metal layer on the substrate to promote the growing of the carbon nanotubes, forming an amorphous carbon layer on the catalyst metal layer where the amorphous carbon layer partially covers the catalyst metal layer, and growing the carbon nanotubes from a surface of the catalyst metal layer. The carbon nanotubes are grown in a portion of the surface of the catalyst metal layer that is not covered by the amorphous carbon layer. In the method of growing carbon nanotubes, the carbon nanotubes are grow at a low temperature. A density of carbon nanotubes can be controlled to improve field emission characteristics of an emitter of a field emission device.
Abstract:
Provided are a vertical interconnection structure including carbon nanotubes and a method of fabricating the same. The vertical interconnection structure includes a substrate; a lower electrode formed on the substrate; a catalyst layer formed on the lower electrode; an inactivated catalyst layer covering the lower electrode and having a first hole exposing the catalyst layer; an insulating layer which is formed on the inert catalyst layer and has a second hole connected to the first hole; a plurality of carbon nanotubes grown from an exposed area of the catalyst layer by the first hole; an upper electrode on the insulating layer being electrically connected to the carbon nanotubes, the inactivated catalyst layer is formed through a thermal reaction between the catalyst layer covering the lower electrode except for the catalyst layer in the first hole and a passivation layer having a third hole corresponding to the second hole.
Abstract:
In a carbon nanotube (CNT) structure and a method of manufacturing the CNT structure, and in a field emission display (FED) device using the CNT structure and a method of manufacturing the FED device, the CNT structure includes a substrate, a plurality of buffer particles having a predetermined size coated on the substrate, a plurality of catalyst layers formed on surfaces of the buffer particles by annealing a catalyst material deposited on the substrate to a predetermined thickness so as to cover the buffer particles, and a plurality of CNTs grown from the catalyst layers.