摘要:
A process flow for forming magnetic tunnel junction (MTJ) nanopillars with minimal sidewall residue and damage is disclosed wherein a pattern is first formed in a hard mask or uppermost MTJ layer. Thereafter, the hard mask sidewall is etch transferred through the remaining MTJ layers with a RIE process comprising main etch and over etch portions, and a cleaning step. The RIE process features noble gas and an oxidant that is one or more of CH3OH, C2H5OH, NH3, N2O, H2O2, H2O, O2, and CO. Noble gas/oxidant flow rate ratio during over etch may be greater than during main etch to avoid chemical damage to MTJ sidewalls. The cleaning step may comprise plasma or ion beam etch with the noble gas and oxidant mixture. Highest values for magnetoresistive ratio and coercivity (Hc) are observed for noble gas/oxidant ratios from 75:25 to 90:10, especially for MTJ nanopillar sizes ≤100 nm.
摘要:
A hard mask stack for etching a magnetic tunneling junction (MTJ) structure is described. The hard mask stack is formed on a stack of MTJ layers on a bottom electrode and comprises an electrode layer on the MTJ stack, a buffer metal layer on the electrode layer, a metal hard mask layer on the buffer metal layer, and a dielectric layer on the metal hard mask layer wherein a dielectric mask is defined in the dielectric layer by a photoresist mask, a metal hard mask is defined in the metal hard mask layer by the dielectric mask, a buffer metal mask is defined in the buffer metal layer by the metal hard mask, an electrode mask is defined in the electrode layer by the buffer metal mask, and the MTJ structure is defined by the electrode mask wherein the electrode mask remaining acts as a top electrode.
摘要:
An improved method for etching a magnetic tunneling junction (MTJ) structure is achieved. A stack of MTJ layers is provided on a bottom electrode. The MTJ stack is patterned to form a MTJ device wherein sidewall damage or sidewall redeposition is formed on sidewalls of the MTJ device. A dielectric layer is deposited on the MTJ device and the bottom electrode. The dielectric layer is etched away using ion beam etching at an angle relative to vertical of greater than 50 degrees wherein the dielectric layer on the sidewalls is etched away and wherein sidewall damage or sidewall redeposition is also removed and wherein some of the dielectric layer remains on horizontal surfaces of the bottom electrode.
摘要:
A three terminal spin-orbit-torque (SOT) device is disclosed wherein a free layer (FL) with a switchable magnetization is formed on a Spin Hall Effect (SHE) layer comprising a Spin Hall Angle (SHA) material. The SHE layer has a first side contacting a first bottom electrode (BE) and an opposite side contacting a second BE where the first and second BE are separated by a dielectric spacer. A first current is applied between the two BE, and the SHE layer generates SOT on the FL thereby switching the FL magnetization to an opposite perpendicular-to-plane direction. The SHE layer is a positive or negative SHA material, and may be a topological insulator such as Bi2Sb3. A top electrode is formed on an uppermost hard mask in each SOT device. A single etch through the FL and SHE layer ensures a reliable first current pathway that is separate from a read current pathway.
摘要:
A process flow for forming magnetic tunnel junctions (MTJs) with minimal sidewall residue and reduced low tail population is disclosed wherein a pattern is first formed in a hard mask that is an uppermost MTJ layer. Thereafter, the hard mask pattern is etch transferred through the underlying MTJ layers including a reference layer/tunnel barrier/free layer stack. The etch transfer may be completed in a single RIE step based on a first flow rate of O2 and a second flow rate of an oxidant such as CH3OH where the CH3OH/O2 ratio is at least 7.5:1. The RIE may also include a flow rate of a noble gas. In other embodiments, a chemical treatment with an oxidant such as CH3OH, and a volatilization at 50° C. to 450° C. may follow an etch transfer through the MTJ stack when the ion beam etch or plasma etch involves noble gas ions.
摘要:
A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers is provided on a bottom electrode. A top electrode is provided on the MTJ stack. The top electrode is patterned. Thereafter, the MTJ stack not covered by the patterned top electrode is oxidized or nitridized. Then, the MTJ stack is patterned to form a MTJ device wherein any sidewall re-deposition formed on sidewalls of the MTJ device is non-conductive and wherein some of the dielectric layer remains on horizontal surfaces of the bottom electrode.
摘要:
A method for etching a magnetic tunneling junction (MTJ) structure is described. A bottom electrode layer is provided on a substrate. A seed layer is deposited on the bottom electrode layer. The seed layer and bottom electrode layer are patterned. A dielectric layer is deposited over the patterned seed layer and bottom electrode layer and planarized wherein the seed layer is exposed. Thereafter, a stack of MTJ layers is deposited on the patterned seed layer comprising a pinned layer, a tunnel barrier layer, and a free layer. The MTJ stack is then patterned to form a MTJ device. Because the seed layer was patterned before the MTJ patterning step, the exposure of the device to etching plasma gases is shortened and thus, etch damage is minimized.
摘要:
A magnetic device for magnetic random access memory (MRAM), spin torque MRAM, or spin torque oscillator technology is disclosed wherein a perpendicularly magnetized magnetic tunnel junction (p-MTJ) with a sidewall is formed between a bottom electrode and a top electrode. A first dielectric layer is 3 to 400 Angstroms thick, and formed on the p-MTJ sidewall with a physical vapor deposition RF sputtering process to establish a thermally stable interface with the p-MTJ up to temperatures around 400° C. during CMOS fabrication. The first dielectric layer may comprise one or more of B, Ge, and alloys thereof, and an oxide, nitride, carbide, oxynitride, or carbonitride. The second dielectric layer is up to 2000 Angstroms thick and may be one or more of SiOYNZ, AlOYNZ, TiOYNZ, SiCYNZ, or MgO where y+z>0.
摘要:
A hard mask stack for etching a magnetic tunneling junction (MTJ) structure is described. An electrode layer is deposited on a stack of MTJ layers on a bottom electrode. A photoresist mask is formed on the electrode layer. The electrode layer is etched away where it is not covered by the photoresist mask to form a metal hard mask. The metal hard mask is passivated during or after etching to form a smooth hard mask profile. Thereafter, the photoresist mask is removed and the MTJ structure is etched using the metal hard mask wherein the metal hard mask remaining acts as a top electrode. The resulting MTJ device has smooth sidewalls and uniform device shape.
摘要:
A hard mask stack for etching a magnetic tunneling junction (MTJ) structure is described. The hard mask stack is formed on a stack of MTJ layers on a bottom electrode and comprises an electrode layer on the MTJ stack, a buffer metal layer on the electrode layer, a metal hard mask layer on the buffer metal layer, and a dielectric layer on the metal hard mask layer wherein a dielectric mask is defined in the dielectric layer by a photoresist mask, a metal hard mask is defined in the metal hard mask layer by the dielectric mask, a buffer metal mask is defined in the buffer metal layer by the metal hard mask, an electrode mask is defined in the electrode layer by the buffer metal mask, and the MTJ structure is defined by the electrode mask wherein the electrode mask remaining acts as a top electrode.