Abstract:
A method for manufacturing a semiconductor device having a cooling mechanism comprises a modified region forming step of converging a laser light at a sheet-like object to be processed made of silicon so as to form a modified region within the object along a line to form a modified region, an etching step of anisotropically etching the object after the modified region forming step so as to advance the etching selectively along the first modified region and form a flow path for circulating a coolant as a cooling mechanism within the object, and a functional device forming step of forming a functional device on one main face side of the object.
Abstract:
A laser processing method comprises a laser light converging step of converging a laser light at a sheet-like object to be processed made of silicon so as to form a modified region within the object, and an etching step of anisotropically etching the object so as to thin the object to a target thickness and advancing the etching selectively along the modified region so as to form the object with a through hole tilted with respect to a thickness direction of the object after the laser light converging step, wherein the laser light converging step forms a first modified region as the modified region in a part corresponding to the through hole in the object and a second modified region as the modified region extending parallel to the thickness direction and joining with the first modified region in a part to be removed upon thinning by the anisotropic etching in the object, and wherein the etching step advances the etching selectively along the second modified region and then along the first modified region while thinning the object and completes forming the through hole when the object is at the target thickness.
Abstract:
A substrate processing method for forming a space extending along a predetermined line in a silicon substrate includes a first step of converging a laser light which is an elliptically-polarized light having an ellipticity other than 1 at the substrate so as to form a plurality of modified spots within the substrate along the line and produce a modified region including the modified spots, and a second step of anisotropically etching the substrate so as to advance an etching selectively along the modified region and form the space in the substrate. In the first step, the light is converged at the substrate such that a moving direction of the light with respect to the substrate and a direction of polarization of the light form an angle of 45° or greater therebetween, and the modified spots are made align in one row along the line.
Abstract:
A laser processing method of converging laser light into an object to be processed made of silicon so as to form a modified region and etching the object along the modified region so as to form the object with a through hole comprises a laser light converging step of converging the laser light at the object so as to form the modified region along a part corresponding to the through hole in the object; an etch resist film producing step of producing an etch resist film resistant to etching on an outer surface of the object after the laser light converging step; and an etching step of etching the object so as to advance the etching selectively along the modified region and form the through hole after the etch resist film producing step; while the laser light converging step exposes the modified region to the outer surface of the object.
Abstract:
A laser processing method for forming a hole in a sheet-like object to be processed made of silicon comprises a depression forming step of forming a depression in a part corresponding to the hole on a laser light entrance surface side of the object, the depression opening to the laser light entrance surface; a modified region forming step of forming a modified region along a part corresponding to the hole in the object by converging a laser light at the object after the depression forming step; and an etching step of anisotropically etching the object after the modified region forming step so as to advance the etching selectively along the modified region and form the hole in the object; wherein the modified region forming step exposes the modified region or a fracture extending from the modified region to an inner face of the depression.
Abstract:
The present invention provides a laser processing method which improves strength and quality of an object to be processed after working. In the present embodiment, after modified regions 7 are formed along the outlines of hollowed-out portions Q1 and Q2 in the object 1 by irradiating the object 1 with a laser light, etching is performed onto the object 1 to selectively advance etching along a fracture which is contained in the modified regions 7 or extend from the modified regions 7, and the hollowed-out portions Q1 and Q2 are spaced and moved from the object 1. Here, the modified regions 7 are formed so as to connect to each other along the outlines of the hollowed-out portions Q1 and Q2, and further exposed on a surface 3 side of the object 1. In this way, in the present embodiment, it is possible to perform working so as to hollow out the hollowed-out portions Q1 and Q2 from the object 1 without applying external stress, and it is possible to remove the fracture generated according to the formation of the modified regions 7 by etching.
Abstract:
A substrate processing method for forming a space extending along a predetermined line in a silicon substrate includes a first step of converging a laser light which is an elliptically-polarized light having an ellipticity other than 1 at the substrate so as to form a plurality of modified spots within the substrate along the line and construct a modified region including the modified spots, and a second step of anisotropically etching the substrate so as to advance an etching selectively along the modified region and form the space in the substrate. In the first step, the light is converged at the substrate such that a moving direction of the light with respect to the substrate and a direction of polarization of the light form an angle of less than 45° therebetween, and the modified spots are made align in a plurality of rows along the line.
Abstract:
In a method comprising a modified region forming step of converging a laser light at a sheet-like object to be processed made of silicon so as to form a plurality of modified spots within the object along a modified region forming line tilted in a first lateral direction with respect to a thickness direction of the object and the plurality of modified spots construct a modified region, and an etching step of anisotropically etching the object after the modified region forming step so as to advance the etching selectively along the modified region and form the object with a space extending obliquely with respect to the thickness direction, the modified region forming step forms the plurality of modified spots such that the modified spots adjacent to each other at least partly overlap each other when seen in the first lateral direction.
Abstract:
A method for manufacturing a light-absorbing substrate having a surface with depressions and projections comprises a first step of irradiating a substrate with a laser light so as to form a plurality of modified regions arranged two-dimensionally along a surface of the substrate within the substrate and cause at least one of each modified region and a fracture generated from the modified region to reach the surface of the substrate and a second step of etching the surface of the substrate after the first step so as to form depressions and projections on the surface of the substrate.
Abstract:
A method for manufacturing a chip constituted by a functional device formed on a substrate comprises a functional device forming step of forming the functional device on one main face of a sheet-like object to be processed made of silicon; a first modified region forming step of converging a laser light at the object so as to form a first modified region along the one main face of the object at a predetermined depth corresponding to the thickness of the substrate from the one main face; a second modified region forming step of converging the laser light at the object so as to form a second modified region extending such as to correspond to a side edge of the substrate as seen from the one main face on the one main face side in the object such that the second modified region joins with the first modified region along the thickness direction of the object; and an etching step of selectively advancing etching along the first and second modified regions after the first and second modified region forming steps so as to cut out a part of the object and form the substrate.