Abstract:
A compound of the invention is represented by a formula (1) below. In the formula (1), at least one of A1 and A2 represents a substituted or unsubstituted nitrogen-containing aromatic heterocyclic group. A material for an organic electroluminescence device contains the compound represented by the formula (1). The material for an organic electroluminescence device includes an organic thin-film layer between an anode and a cathode, in which the organic thin-film layer contains the compound represented by the formula (1).
Abstract:
A material for organic EL device which includes a compound having a specific structure: an azine ring having a cyano-substituted aromatic hydrocarbon group, an azine ring having a cyano-substituted heterocyclic group, or an azine ring having a cyano group directly bonded to the azine ring. An organic electroluminescence device including an organic thin film layer between a cathode and an anode, wherein the organic thin film layer includes a light emitting layer and at least one layer containing the material for organic electroluminescence device, has a long lifetime.
Abstract:
An organic electroluminescence device includes: an emitting region provided between a cathode and an anode; and a hole transporting zone provided between the anode and the emitting region, in which the hole transporting zone includes at least a first anode side organic layer and a second anode side organic layer, the first anode side organic layer is in direct contact with the second anode side organic layer, a total film thickness of the hole transporting zone is in a range from 20 nm to 80 nm, the first anode side organic layer contains no compound contained in the second anode side organic layer, the first anode side organic layer contains a first organic material and a second organic material, the first organic material is different from the second organic material, and a content of the first organic material in the first anode side organic layer is less than 50 mass %.
Abstract:
An organic electroluminescence device includes: an anode; a cathode; and a single- or multi-layer organic layer interposed between the anode and the cathode. The organic layer includes at least one emitting layer containing a dopant material represented by a formula below. In the formula, X1 to X5 each independently represent CR1 or a nitrogen atom, at least one of X1 to X5 is a nitrogen atom, L1 represents a divalent aromatic hydrocarbon group or a divalent heterocyclic group, A and B each independently represents a cyclic structure, at least one of the cyclic structure A and the cyclic structure B has a substituent, and R1 represents an aryl group, alkyl group or the like.
Abstract:
Provided are an organic electroluminescence device having high current efficiency and a long lifetime, and a biscarbazole derivative for realizing the device. The biscarbazole derivative has a specific substituent. The organic EL device has a plurality of organic thin-film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin-film layers contains the biscarbazole derivative.
Abstract:
Provided are an organic electroluminescence device, which shows high luminous efficiency, is free of any pixel defect, and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound having a π-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, oxygen atom, or sulfur atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
Abstract:
An organic electroluminescence device employing a specific biscarbazole derivative having a cyano group as a first host and a compound having both a carbazole structure and a nitrogen-containing aromatic heteroring as a second host. The organic electroluminescence device has a prolonged lifetime.
Abstract:
A fused fluoranthene compound which includes an indeno[3,2-b]fluoranthene skeleton having a hetero atom is a novel compound, which is useful as a material for organic electroluminescence devices for use in an organic electroluminescence device and an electronic equipment.
Abstract:
An organic electroluminescence device includes: a cathode; an anode; and an organic layer having one or more layers and provided between the anode and the cathode, in which the organic layer includes an emitting layer, and the emitting layer includes a first host material, a second host material and a phosphorescent dopant material. The first host material is a compound represented by a formula (1) below. The second host material is a compound represented by a formula (4) below.