Abstract:
A process is provided for fermenting CO-containing gaseous substrates in a low phosphate medium. The process includes blending a liquid medium that includes at least one transition metal element with a liquid medium that includes at least at least one other transition metal element and one non-metal element to provide a fermentation medium. The process is effective for preventing precipitation of one or more transition metal elements with one or more non-metal elements. The fermentation medium used in the process is prepared in a way that requires significantly lower amounts of water and reduced levels of phosphate.
Abstract:
A process is provided for producing syngas that is effective for use in downstream processes. The process for producing syngas includes operating a gasification apparatus in a start-up mode until the gasification apparatus and equipment downstream of the gasification apparatus are adequately warmed up to a first target temperature. Upon reaching a first target temperature, the process is then operated in a production mode to produce a second syngas with a higher CO/CO2 molar ratio. Operation in a start-up mode until reaching a first target temperature, provides a process that is effective for reducing fouling in downstream equipment and for providing a second syngas can be more effectively cooled and cleaned.
Abstract translation:提供了一种生产有效用于下游工艺的合成气的方法。 制造合成气的方法包括以启动模式操作气化装置,直到气化装置下游的气化装置和设备被充分地预热到第一目标温度。 当达到第一目标温度时,然后以生产模式操作该过程以产生具有较高CO / CO 2摩尔比的第二合成气。 在启动模式下的操作直到达到第一目标温度,提供了有效减少下游设备中的结垢和提供第二合成气的过程可以被更有效地冷却和清洁。
Abstract:
Process are provided which are effective for controlling medium conductivity during fermentation of a CO-containing gaseous substrate while providing an STY of about 10 g ethanol/(L·day) or more. The process includes balancing medium conductivity, specific carbon uptake or cell density levels.
Abstract:
A process for stable fermentation of CO-containing substrates and improved ethanol productivity includes providing medium components in amounts needed by microorganisms in the fermentation. The process includes determining a potassium concentration in the fermentation medium and providing a first medium and a second medium to the fermentation, the first medium provided at a rate effective for maintaining the potassium in the fermentation medium in a range of about 20 to about 200 mg/L until reaching a target cell density.
Abstract:
A process for stable fermentation of CO-containing substrates and improved ethanol productivity includes providing medium components in amounts needed by microorganisms in the fermentation. The process includes determining a potassium concentration in the fermentation medium and providing a first medium and a second medium to the fermentation, the first medium provided at a rate effective for maintaining the potassium in the fermentation medium in a range of about 20 to about 200 mg/L until reaching a target cell density.
Abstract:
A process provides for reducing agglomerate formation during thermal decomposition of a carbonaceous material feedstock. A non-catalytic thermal decomposition process includes providing generally solid feedstock to a thermal decomposition unit and moving the feedstock through at least one gasification zone in the thermal decomposition unit with a moving device. The process includes providing oxygen and optionally an additional gas to the gasification zone. In one aspect, the process includes moving feedstock through the gasification zone and providing oxygen to the gasification zone at rates effective for maintaining a material bed temperature not exceeding about 2300° F. at any point in the material bed, and for maintaining a material bed temperature of about 500° F. to about 2000° F.
Abstract:
An alcohol product composition is provided that may be used directly for blending with existing fuel sources. More specifically, the alcohol product composition includes ethanol and organic compositions which act as a denaturant. Further, a process for production of ethanol compositions is provided that includes providing a permeate to a distillation tower, removing an ethanol draw-off composition from the distillation tower, removing a side draw from the distillation tower to provide side-draw composition, combining the ethanol draw-off composition and side-draw composition to provide an alcohol composition
Abstract:
The present invention relates to a process for the production of ethanol and butanol from biomass, and in particular to a process for the production of ethanol and butanol using two separate fermentation step subjecting the biomass feedstock to anaerobic fermentation at a pH below 6.0 and at a temperature in the range 20 to 700° C. and so as to convert the biomass to a product predominantly comprising acetic acid and butyric acid with at least a 2:1 ratio by weight of acetic acid to butyric acid, c) treating the product of stream of step (b) to separate a solution comprising the acetic acid and butyric acid by: (i) separating a solution comprising the acetic acid and butyric acid from any residual solids and (ii) separating bacteria and/or pasteurizing or sterilizing the solution from the first fermentation step, and d) in a second fermentation step fermenting the solution comprising the acetic acid and butyric acid from the step (c) to form ethanol and butanol.