METHODS AND APPARATUS FOR MODIFYING A MACHINE LEARNING MODEL

    公开(公告)号:US20230093823A1

    公开(公告)日:2023-03-30

    申请号:US17041340

    申请日:2019-12-18

    Abstract: Methods, apparatus, systems, and articles of manufacture for modifying a machine learning model are disclosed. An example apparatus includes a supervised branch inserter to insert a supervised branch into a machine learning model at an identified location, a first cluster generator to generate a first cluster of the inserted supervised branch using a first clustering technique, a second cluster generator to generate a second cluster of the inserted supervised branch using a second clustering technique, the second clustering technique different from the first clustering technique, a cluster joiner to join the first cluster and the second cluster to form a clustering block, the clustering block appended to an end of the supervised branch, and a propagation strategy executor to execute a propagation training strategy to modify a parameter of the machine learning model.

    Key-point guided human attribute recognition using statistic correlation models

    公开(公告)号:US11157727B2

    公开(公告)日:2021-10-26

    申请号:US16647722

    申请日:2017-12-27

    Abstract: Techniques are provided for neural network based, human attribute recognition, guided by anatomical key-points and statistic correlation models. Attributes include characteristics that can be visibly identified or inferred from an image, such as gender, hairstyle, clothing style, etc. A methodology implementing the techniques according to an embodiment includes applying an attribute feature extraction (AFE) convolutional neural network (CNN) to an image of a human to generate attribute feature maps based on the image. The method further includes applying a key-point guided proposal (KPG) CNN to the image of the human to generate proposed hierarchical regions of the image based on associated anatomical key-points. The method further includes generating recognition probabilities for the human attributes using a CNN combination layer that incorporates the attribute feature maps, the proposed hierarchical regions, and statistical correlation models (SCMs) which provide correlations between the features of the attribute feature maps and the proposed hierarchical regions.

    ADAPTIVE DEFORMABLE KERNEL PREDICTION NETWORK FOR IMAGE DE-NOISING

    公开(公告)号:US20210142448A1

    公开(公告)日:2021-05-13

    申请号:US17090170

    申请日:2020-11-05

    Abstract: Embodiments are generally directed to an adaptive deformable kernel prediction network for image de-noising. An embodiment of a method for de-noising an image by a convolutional neural network implemented on a compute engine, the image including a plurality of pixels, the method comprising: for each of the plurality of pixels of the image, generating a convolutional kernel having a plurality of kernel values for the pixel; generating a plurality of offsets for the pixel respectively corresponding to the plurality of kernel values, each of the plurality of offsets to indicate a deviation from a pixel position of the pixel; determining a plurality of deviated pixel positions based on the pixel position of the pixel and the plurality of offsets; and filtering the pixel with the convolutional kernel and pixel values of the plurality of deviated pixel positions to obtain a de-noised pixel.

Patent Agency Ranking