Abstract:
A method and system for maintaining release consistency in shared memory programming on a computing device having multiple processing units includes, in response to a page fault, initiating a transfer, from one processing unit to another, of data associated with more than one but less than all of the pages of shared memory.
Abstract:
Various embodiments are generally directed an apparatus and method for configuring an execution environment in a user space for device driver operations and redirecting a device driver operation for execution in the execution environment in the user space including copying instructions of the device driver operation from the kernel space to a user process in the user space. In addition, the redirected device driver operation may be executed in the execution environment in the user space.
Abstract:
A computer system may comprise a computer platform and input-output devices. The computer platform may include a plurality of heterogeneous processors comprising a central processing unit (CPU) and a graphics processing unit (GPU) and a shared virtual memory supported by a physical private memory space of at least one heterogeneous processor or a physical shared memory shared by the heterogeneous processor. The CPU (producer) may create shared multi-version data and store such shared multi-version data in the physical private memory space or the physical shared memory. The GPU (consumer) may acquire or access the shared multi-version data.
Abstract:
Embodiments of the invention provide a programming model for CPU-GPU platforms. In particular, embodiments of the invention provide a uniform programming model for both integrated and discrete devices. The model also works uniformly for multiple GPU cards and hybrid GPU systems (discrete and integrated). This allows software vendors to write a single application stack and target it to all the different platforms. Additionally, embodiments of the invention provide a shared memory model between the CPU and GPU. Instead of sharing the entire virtual address space, only a part of the virtual address space needs to be shared. This allows efficient implementation in both discrete and integrated settings.
Abstract:
Embodiments of the invention provide a programming model for CPU-GPU platforms. In particular, embodiments of the invention provide a uniform programming model for both integrated and discrete devices. The model also works uniformly for multiple GPU cards and hybrid GPU systems (discrete and integrated). This allows software vendors to write a single application stack and target it to all the different platforms. Additionally, embodiments of the invention provide a shared memory model between the CPU and GPU. Instead of sharing the entire virtual address space, only a part of the virtual address space needs to be shared. This allows efficient implementation in both discrete and integrated settings.