Abstract:
Some demonstrative embodiments include devices, systems and/or methods of estimating a location of a mobile device. For example, an apparatus may include a wireless communication unit to communicate a message between an access point and a mobile device, the message including a group identifier to indicate the access point belongs to a group of two or more access points having local coordinates measured with respect to a common origin point.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating filter information. For example, a device may include a wireless communication unit to perform the functionality of a first station (STA) to communicate with a second STA, the wireless communication unit is to communicate filter information including Transmit (Tx) filter information, the Tx filter information representing one or more Tx filter parameters of one or more Tx filters utilized by at least one STA selected from the group consisting of the first STA and the second STA.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of estimating a location of a mobile device. For example, an apparatus may include a wireless communication unit to communicate a message between an access point and a mobile device, the message including a group identifier to indicate the access point belongs to a group of two or more access points having local coordinates measured with respect to a common origin point.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of one-sided Round-Trip-Time (RTT) measurement. For example, an apparatus may include circuitry and logic configured to cause a mobile device to receive bias information of an Access-Point (AP) ; perform a one-sided round-trip-time (RTT) measurement with the AP; and estimate a range between the mobile device and the AP based on the one-sided RTT measurement and the bias information.
Abstract:
Systems and methods are directed to use of a neighbor list for wireless indoor navigation. The neighbor list may include related information regarding all neighboring access points (APs). The neighbor list can be transmitted, at least partially, to include the related information of a desired number of or all APs in the neighbor list from one AP to a wireless device. The neighbor list can be transmitted in a Neighbor Report Response (NRR) or a time-of-flight (ToF) Response and allow the wireless device to scan for minimal number of APs for ToF measurements. By using the neighbor list, power consumption and time can be significantly reduced during wireless indoor navigation.
Abstract:
Systems and methods are directed to information exchange between a location point (LP) and a wireless device. A LP may include a network access point (AP) and/or a dedicated location entity. In one embodiment, supplemental location-related information of a LP including, but not limited to, a geographic location source, geographic location accuracy, geographic location update time, LP type, distance from another LP, and/or timing offset calibration accuracy, may be wirelessly transmitted from a LP to a wireless device.
Abstract:
Devices, systems, and methods are directed to the determination of current location information of a wireless communication device. Such devices, systems, and methods include a plurality of sensor elements configured to provide orientation parameter information, velocity and/or acceleration parameter information, and directional heading parameter information; a camera mechanism configured to capture images at predetermined intervals of a user's body as the user handles the wireless communication device; orientation logic configured to determine orientation change information attributable to the user's handling, based on the captured images, and provide orientation correction information; and location estimation logic configured to provide current location information based on previous location information, the velocity and/or acceleration parameter information, the directional heading parameter information and/or the orientation parameter information, and the orientation correction information.
Abstract:
Some demonstrative embodiments include apparatuses systems and/or methods of Collaborative Time of Arrival (CToA). For example, an apparatus may include circuitry and logic configured to cause a CToA broadcasting wireless communication station (STA) (bSTA) to broadcast an announcement frame to announce a ranging-to-self sequence of a CToA measurement protocol; to broadcast a first ranging measurement frame of the ranging-to-self sequence subsequent to the announcement frame; to broadcast a second ranging measurement frame of the ranging-to-self sequence subsequent to the first ranging measurement frame; and to broadcast a Location Measurement Report (LMR) frame of the ranging-to-self sequence subsequent to the second ranging measurement frame, the LMR frame including a Time of Departure (ToD) of the first ranging measurement frame.
Abstract:
An apparatus comprising an antenna array comprising a plurality of antennas to receive a plurality of radar signals reflected by a plurality of objects responsive to a transmitted radar signal; a doppler measurement module to determine, for a first reflected radar signal of the plurality of reflected radar signals, a first doppler measurement indicating a velocity component based on a comparison of the first reflected radar signal to the transmitted radar signal; a phase offset measurement module to determine a first phase offset of the first reflected radar signal received at a first antenna of the plurality of antennas relative to a phase of the first reflected radar signal received at a reference antenna of the plurality of antennas; and a phase offset calibration module to determine, for the first antenna, a first phase offset calibration error based on the first doppler measurement and the first phase offset.
Abstract:
For example, an apparatus may include a radar antenna including at least one Transmit (Tx) antenna to transmit a Tx radar signal; and a plurality of Receive (Rx) antennas to receive Rx radar signals based on the Tx radar signal, wherein a distance between a first Rx antenna of the planarity of Rx antennas and a second Rx antenna of the plurality of Rx antennas, which is adjacent to the first Rx antenna, is at least ten times a wavelength of a central frequency of the Tx radar signal.