Abstract:
Some demonstrative aspects include radar apparatuses, devices, systems and methods. In one example, an apparatus may include one or more Transmit (Tx) antennas to transmit radar Tx signals, one or more Receive (Rx) antennas to receive radar Rx signals, and a processor to generate radar information based on the radar Rx signals. The apparatus may be implemented, for example, as part of a radar device, for example, as part of a vehicle including the radar device. In other aspects, the apparatus may include any other additional or alternative elements and/or may be implemented as part of any other device.
Abstract:
Some demonstrative embodiments include apparatuses systems and/or methods of ranging measurement. For example, an apparatus may include circuitry and logic configured to cause a first wireless communication station (STA) to receive from a second STA a sounding transmission for a range measurement of a range between the first STA and the second STA; to determine a channel response estimation based on the sounding transmission from the second STA; to determine a timing value based on the channel response estimation; and to transmit a feedback message to the second STA, the feedback message including the timing value.
Abstract:
Systems and methods are directed to use of a neighbor list for wireless indoor navigation. The neighbor list may include related information regarding all neighboring access points (APs). The neighbor list can be transmitted, at least partially, to include the related information of a desired number of or all APs in the neighbor list from one AP to a wireless device. The neighbor list can be transmitted in a Neighbor Report Response (NRR) or a time-of-flight (ToF) Response and allow the wireless device to scan for minimal number of APs for ToF measurements. By using the neighbor list, power consumption and time can be significantly reduced during wireless indoor navigation.
Abstract:
Systems and methods are directed to use of a neighbor list for wireless indoor navigation. The neighbor list may include related information regarding all neighboring access points (APs). The neighbor list can be transmitted, at least partially, to include the related information of a desired number of or all APs in the neighbor list from one AP to a wireless device. The neighbor list can be transmitted in a Neighbor Report Response (NRR) or a time-of-flight (ToF) Response and allow the wireless device to scan for minimal number of APs for ToF measurements. By using the neighbor list, power consumption and time can be significantly reduced during wireless indoor navigation.
Abstract:
Systems and methods are directed to securely identifying positioning information and include a plurality of APs configured to facilitate wireless communications within a servicing area, an infrastructure entity, communicatively coupled to each of the APs, and configured to store and process subscription information, positioning information, QoS information indicative of resolution levels of the positioning information, and encryption/decryption information specific to each of a plurality of subscribing member wireless devices. As a wireless device enters the servicing area, the wireless device establishes a first level of communication with the infrastructure entity via at least one AP, and requests positioning information to the at least one AP which is then forwarded to the infrastructure entity. Upon verifying that the wireless device is a subscribing member, a second level of communication is established that securely provides position information to the wireless device, based on the encryption/decryption information specific to the wireless device.
Abstract:
Systems and methods are directed to securely identifying positioning information and include a plurality of APs configured to facilitate wireless communications within a servicing area, an infrastructure entity, communicatively coupled to each of the APs, and configured to store and process subscription information, positioning information, QoS information indicative of resolution levels of the positioning information, and encryption/decryption information specific to each of a plurality of subscribing member wireless devices. As a wireless device enters the servicing area, the wireless device establishes a first level of communication with the infrastructure entity via at least one AP, and requests positioning information to the at least one AP which is then forwarded to the infrastructure entity. Upon verifying that the wireless device is a subscribing member, a second level of communication is established that securely provides position information to the wireless device, based on the encryption/decryption information specific to the wireless device.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of calibrating a radio delay. For example, a radio delay calibrator may calibrate at least one radio delay of a radio of a wireless communication device based on one or more calibration messages received by the wireless communication device from one or more other wireless communication devices, the calibration messages including calibration information, which is based on radio delays of the one or more other wireless communication devices.
Abstract:
Some aspects relate to an apparatus, method and/or system of radar tracking. For example, a radar tracker may be configured to generate target tracking information corresponding to a plurality of targets in an environment of a radar device. For example, the radar tracker may include a processor configured to determine the target tracking information based on a plurality of multi-target density functions corresponding to a respective plurality of target types, and to update the plurality of multi-target density functions based on detection information corresponding to a plurality of detections in the environment. For example, the radar tracker may include an output to output the target tracking information.
Abstract:
Some demonstrative embodiments include apparatuses systems and/or methods of Collaborative Time of Arrival (CToA). For example, an apparatus may include circuitry and logic configured to cause a CToA broadcasting wireless communication station (STA) (bSTA) to broadcast an announcement frame to announce a ranging-to-self sequence of a CToA measurement protocol; to broadcast a first ranging measurement frame of the ranging-to-self sequence subsequent to the announcement frame; to broadcast a second ranging measurement frame of the ranging-to-self sequence subsequent to the first ranging measurement frame; and to broadcast a Location Measurement Report (LMR) frame of the ranging-to-self sequence subsequent to the second ranging measurement frame, the LMR frame including a Time of Departure (ToD) of the first ranging measurement frame.
Abstract:
A system for time-of-flight (ToF) positioning in an IEEE 802.11 network comprises an initiating station that transmits a request frame over a channel to a responding station for a ToF position measurement. The responding station may respond with an offloading of the channel information, request frame receipt time, and response frame transmit time back to the initiating station to enable the initiating station to calculate the ToF position with respect to the responding station.