Abstract:
A method for projecting a 3-D viewable image onto a display surface, comprising the steps of, providing two or more projection systems; arranging the two or more projection systems into a first group and second group, wherein the first group and second group each comprise one or more projection systems; arranging the first and second group of projection systems such that each group of project systems can project an image on a display surface and configuring the first and second group of projection systems such that the first and second group of projection systems alternately project onto the display surface.
Abstract:
According to the present invention, there is provided an optical device comprising, a plurality of light sources each operable to provide a light beam; at least one beam combiner which is operable to combine the light beams from the plurality of light sources, to provide a combined light beam; a beam splitter, which is arranged to receive the combined light beam and to split the combined light beam into a primary light beam and a secondary light beam, wherein one or more characteristics of the secondary light beam are indicative of one or more characteristics of the primary light beam, wherein the beam splitter comprises a first surface through which the primary light beam is emitted from the beam splitter and a second surface through which the secondary light beam is emitted from the beam splitter; a mirror component which comprises a mirror, wherein the mirror component is arranged such that the mirror can reflect the primary light beam which is emitted through the first surface of the beam splitter and wherein the mirror can oscillate about at least one oscillation axis to scan the primary light beam; wherein the optical device further comprises a photodiode which is configured to receive the secondary light beam and to detect one or more characteristics of the secondary light beam, wherein the photodiode is configured to be offset from being parallel to at least one of the first surface or second surface of the a beam splitter, to reduce the amount of parasitic light which is directed to the mirror. There is further provided a corresponding method of projecting an image.
Abstract:
According to the present invention there is provided a method of reducing speckle in a primary light spot which is projected onto a surface by a projection device which comprises a laser, wherein a primary light spot is defined by two or more secondary light spots, the method comprising the steps of (a) consecutively providing the laser with “n” different input currents so that the laser consecutively outputs “n” different light beams, wherein each one of the “n” different light beams defines a secondary light spot on the surface, wherein “n” is an integer value greater than one; and (b) superposing the secondary light spots. There is further provided a corresponding method of projecting a pixel.
Abstract:
A projection apparatus, comprising one or more light sources, wherein the one or more light sources are arranged to collectively provide a light signal which comprises multiple wavelengths, wherein the projection apparatus further comprises an optical filter configured to filter the light signal provided by the one or more light sources, so that two or more images may be projected simultaneously by the projection apparatus, each image being projected to a different position. There is further provided a scanning device which uses the afore-mentioned projection apparatus.
Abstract:
According to the present invention there is provided a method for projecting a 3-D viewable image onto a display surface, comprising the steps of, providing two or more projection systems; arranging the two or more projection systems into a first group and second group, wherein the first group and second group each comprise one or more projection systems; arranging the first and second group of projection systems such that each group of project systems can project an image on a display surface, wherein the first group of projection systems is arranged such that the first group of projection systems can project an image to a first position on the display surface and the second group of projection systems is arranged such that the second group of projection systems can project an image to a second position on the display surface, wherein the first and second positions are off-set from one another; configuring the first and second group of projection systems such that the first and second group of projection systems alternately project onto the display surface. There is further provided a corresponding projection system.
Abstract:
The present invention provides a projection system (10), preferably for a head-up display e.g. on board a vehicle, comprising a laser source (1), a diffuser (3) and telecentric optics (2) disposed between the laser and the diffuser so that the telecentric optics outputs parallel rays to the diffuser, the diffused light being thus independent from the incidence angle; each pixel of the projected image has the same brightness, regardless of the angle or of the position from which it is viewed.
Abstract:
A method of projecting an image with improved safety, using a projection device which comprises a MEMS mirror which oscillates about one or more oscillation axes to scan light from one or more lasers, across a display screen, to project pixels which define an image onto a display screen, the method comprising the steps of, (a) selecting a laser class for the projection device; (b) calculating relationship between maximum accessible emission limit and distance, for the selected laser class, for a predetermined number of black pixels in an image; (c) repeating step (b) a plurality of times, each for a different predetermined number of black pixels in the image, so as to provide a plurality of relationships between maximum accessible emission limit and distance, for the selected laser class, wherein each relationship is for different predetermined number of black pixels in the image; (d) determining the distance between a display screen and the projection device; (e) selecting a desired maximum accessible emission limit for an image which is to be projected by the projection device onto said display screen; (f) selecting a relationship, from the plurality of relationships between maximum accessible emission limit and distance, which contains a maximum accessible emission limit which is equal to the desired maximum accessible emission limit selected in step (e), at the distance determined in step (d) and; (g) identifying the predetermined number of black pixels in the image for that selected relationship; (h) modifying a pixel stream which defines said image which is to be projected by the projection device, so that the pixel stream is provided with said predetermined number of black pixels identified in step (g). There is further provided a corresponding projection device.
Abstract:
According to the present invention there is provided a projection device, which is configured to project an image which is co-operable with images projected by one or more other projection devices, wherein the projection device comprises a detector operable to detect characteristics of images projected on a display surface by the projection device and one or more other projection devices, and a controller operable to adjust the projection device and/or to adjust one or more of the other projection devices, based on the characteristics of the images detected by the detector, such that the images projected by each projection device co-operate on the display surfaces.
Abstract:
Methods, apparatus, systems and articles of manufacture of a photosensor fusion system for lens detection are disclosed herein. An example apparatus includes a projector, a photosensor having a filter and a lens detector to compare an output from the photosensor to a threshold, and a projector controller to selectively enable or disable the projector based on the comparison between the output from the photosensor and the threshold.
Abstract:
Methods and apparatus to identify lenses of head-wearable apparatus are disclosed. Example glasses disclosed herein include a frame and an image generator coupled to the frame. A first lens is removably carriable by the frame. The first lens has a first identifier to provide a first code representative of a first optical characteristic of the first lens. The image generator is to project an image toward the first lens when the first lens is carried by the frame. A reader is to read the first code when the first lens is carried by the frame.