Abstract:
Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
Abstract:
Methods and apparatus for low-latency link compression schemes. Under the schemes, selected packets or messages are dynamically selected for compression in view of current transmit queue levels. The latency incurred during compression and decompression is not added to the data-path, but sits on the side of the transmit queue. The system monitors the queue depth and, accordingly, initiates compression jobs based on the depth. Different compression levels may be dynamically selected and used based on queue depth. Under various schemes, either packets or messages are enqueued in the transmit queue or pointers to such packets and messages are enqueued. Additionally, packets/message may be compressed prior to being enqueued, or after being enqueued, wherein an original uncompressed packet is replaced with a compressed packet. Compressed and uncompressed packets may be stored in queues or buffers and transmitted using a different numbers of transmit cycles based on their compression ratios. The schemes may be implemented to improve the effective bandwidth of various types of links, including serial links, bus-type links, and socket-to-socket links in multi-socket systems.
Abstract:
Embodiments of an invention for SMS4 acceleration hardware are disclosed. In an embodiment, an apparatus includes SMS4 hardware and key transformation hardware. The SMS4 hardware is to execute a round of encryption and a round of key expansion. The key transformation hardware is to transform a key to provide for the SMS4 hardware to execute a round of decryption.
Abstract:
A processor includes a decode unit to receive an instruction to indicate a first source packed data operand and a second source packed data operand. The source operands each to include elements. The data elements to include information selected from messages and logical combinations of messages that is sufficient to evaluate: P1(Wj−16 XOR Wj−9 XOR(Wj−3