Abstract:
Methods and systems for transmitting uplink control information in an LTE Advanced system are disclosed. A user device may determine whether uplink control information and/or available channels meet certain criteria and determine whether the uplink control information should be transmitted on a physical uplink control channel, a physical uplink shared channel, or both, based on the criteria. Criteria may include the size of the uplink control information (absolute size or relative to space available on a channel or a threshold value), the type of control information bits, the number of available (i.e., active or configured) component carriers, and the amount of power that may be required to transmit the uplink control information on more than one channel.
Abstract:
A base station and a method of operating the base station is disclosed for controlling an uplink power. A total uplink transmission power employed when transmitting via a single antenna may be offset by a total power offset value from a total uplink transmission power employed when transmitting via a plurality of antennas.
Abstract:
A method and apparatus of feedback signaling using a high speed dedicated physical control channel (HS-DPCCH) includes transmitting to a first cell a first uplink feedback signal that includes channel quality information (CQI) associated with the first cell A second uplink feedback signal that includes CQI information associated with a second cell is transmitted to the second cell.
Abstract:
A base station and a method of operating the base station is disclosed for controlling an uplink power. A total uplink transmission power employed when transmitting via a single antenna may be offset by a total power offset value from a total uplink transmission power employed when transmitting via a plurality of antennas.
Abstract:
A method and apparatus are used to create RLC PDUs in advance of the E-TFC selection for the MAC PDU that will include this or these RLC PDU(s). The apparatus may be configured to pre-generate RLC PDUs for transmission in a later TTI. This approach avoids the large peak processing requirement due to the tight delay constraint if any RLC PDU to be included into a MAC PDU had to be created after the determination of the size of this MAC PDU, i.e. after E-TFC selection. The method and apparatus maintain an approximate match between the size of an RLC PDU and the size of the MAC PDU it is included into. Maintaining this approximate match ensures that the RLC PDU error rate due to HARQ residual errors remains low. This approach may be designed as “semi-radio aware” or “radio-aware with delay”.
Abstract:
A method and apparatus of performing discontinuous reception (DRX) and downlink inter-frequency and inter-radio access technology (RAT) measurements in CELL_FACH state are disclosed. While in DRX mode, a wireless transmit/receive unite (WTRU) may perform inter-frequency and inter-RAT measurements in a measurement occasion that fall into a DRX period. The WTRU may take the measurements on first predetermined number of frame in which a DRX frame would coincide after a last reception frame if DRX operation was ongoing. The WTRU may periodically wake up for downlink reception in CELL_FACH state in accordance with common DRX pattern that is common to all WTRUs in a cell or may wake up from DRX upon reception of the order and receiving a common traffic.
Abstract:
A method and apparatus of performing discontinuous reception (DRX) and downlink inter-frequency and inter-radio access technology (RAT) measurements in CELL_FACH state are disclosed. While in DRX mode, a wireless transmit/receive unite (WTRU) may perform inter-frequency and inter-RAT measurements in a measurement occasion that fall into a DRX period. The WTRU may take the measurements on first predetermined number of frame in which a DRX frame would coincide after a last reception frame if DRX operation was ongoing. The WTRU may periodically wake up for downlink reception in CELL_FACH state in accordance with common DRX pattern that is common to all WTRUs in a cell or may wake up from DRX upon reception of the order and receiving a common traffic.
Abstract:
A method for discontinuous reception (DRX) implemented in a wireless transmit/receive unit (WTRU) during cell reselection including initiating cell reselection; disabling DRX operation, wherein disabling DRX operation enables continuous reception; transmitting a CELL UPDATE message; receiving a CELL UPDATE CONFIRM message; and enabling DRX operation based on the received CELL UPDATE CONFIRM message.
Abstract:
A method and apparatus are used to create RLC PDUs in advance of the E-TFC selection for the MAC PDU that will include this or these RLC PDU(s). The apparatus may be configured to pre-generate RLC PDUs for transmission in a later TTI. This approach avoids the large peak processing requirement due to the tight delay constraint if any RLC PDU to be included into a MAC PDU had to be created after the determination of the size of this MAC PDU, i.e. after E-TFC selection. The method and apparatus maintain an approximate match between the size of an RLC PDU and the size of the MAC PDU it is included into. Maintaining this approximate match ensures that the RLC PDU error rate due to HARQ residual errors remains low. This approach may be designed as “semi-radio aware” or “radio-aware with delay”.
Abstract:
A method and apparatus for selecting an enhanced dedicated channel (E-DCH) transport format combination (E-TFC) in Cell_FACH state and idle mode are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble and receives an index to an E-DCH resource in response to the RACH preamble. The WTRU may estimate a power headroom based on the maximum WTRU transmit power, power offset value, and the last successfully transmitted RACH preamble transmit power. The WTRU restricts an E-TFC based on the estimated power headroom, and selects an E-TFC based on a set of supported E-TFCs. The WTRU then generates, and transmits, a protocol data unit (PDU) based on the selected E-TFC.