Abstract:
Provided herein are glucagon superfamily peptides conjugated with NHR ligands that are capable of acting at a nuclear hormone receptor. Also provided herein are pharmaceutical compositions and kits of the conjugates of the invention. Further provided herein are methods of treating a disease, e.g., a metabolic disorder, such as diabetes and obesity, comprising administering the conjugates of the invention.
Abstract:
Compositions and formulations comprising insulin or insulin analogues comprising a carboxy terminal portion (CTP) peptide comprising amino acids 112-188 to 142 of the beta subunit of human chorionic gonadotropin (hCGβ) or a partial variant thereof that includes at least one O-glycosylation site of the CTP peptide, wherein the CTP peptide of the CTP peptide-based insulin or insulin analogue is O-glycosylated are described. In particular embodiments, the O-glycosylated insulin analogues are produced in vivo and in further embodiments, the O-glycosylated CTP-based insulin analogues comprise predominantly mannotriose and mannotetrose O-glycans or predominantly mannose O-glycans.
Abstract:
Disclosed herein are modified C-terminal fragments of FGF21 optimized for binding to Klotho β or antagonizing FGF21 activity. FGF21 peptides modified to comprise modifications to the C-terminal amino acid sequence are disclosed that have enhanced activity at the FGF21 receptor. Additionally, conjugates formed between the optimized FGF21 peptide fragments and insulin like peptides or nuclear hormone receptor ligands are provided.
Abstract:
Glucagon peptides with increased GIP activity are provided, optionally with GLP-1 and/or glucagon activity. In some embodiments, C-terminally extended glucagon peptides comprising an amino acid sequence substantially similar to native glucagon are provided herein.
Abstract:
Provided herein are glucagon analogs which exhibit potent activity at the GIP receptor, and, as such are contemplated for use in treating diabetes and obesity. In exemplary embodiments, the glucagon analog of the present disclosures exhibit an EC50 at the GIP receptor which is within the nanomolar or picomolar range.
Abstract:
Provided herein are glucagon analogs which exhibit potent activity at the GIP receptor, and, as such are contemplated for use in treating diabetes and obesity. In exemplary embodiments, the glucagon analog of the present disclosures exhibit an EC50 at the GIP receptor which is within the nanomolar or picomolar range.
Abstract:
Prodrug formulations of bioactive polypeptides are provided wherein the bioactive polypeptide has been modified by the linkage of a dipeptide to the bioactive polypeptide through an ester linkage. The prodrugs disclosed herein in some embodiments have extended half lives of at least 1.5 hours (e.g., at least 10 hours), and more typically greater than 20 hours and less than 70 hours, and are converted to the active form at physiological conditions through a non-enzymatic reaction driven by chemical instability.