Abstract:
Disclosed herein are Complement factor H(CFH) inhibitors, such as anti-CFH antibodies and small molecules, and methods of using said inhibitors.
Abstract:
Described herein are anchor-modified immunoglobulin polypeptides, wherein the anchor moors the immunoglobulin polypeptide to a receptor of interest. The anchor-modified immunoglobulin polypeptides are generally characterized at the N-terminus with an anchor, e.g., the receptor binding portion of a ligand that binds a receptor. Non-human animals genetically modified with recombinant immunoglobulin segments that encode the anchor-modified immunoglobulin polypeptides are capable of making the anchor-modified immunoglobulin polypeptides. Such non-human animals also provided, along with methods and compositions for making and using the non-human animals. Methods for producing anchor-modified immunoglobulins from non-human animals are also provided, as well as anchor-modified immunoglobulins generated therefrom.
Abstract:
Provided are a protein complex in which estrogen receptor 2 (-ERT2) is fused to CRISPR associated protein 9 (Cas9), and a recombinant vector carrying a gene coding the protein complex, wherein ERT2 is bonded to the N-terminus and C-terminus of nuclear localization sequence (NLS)-removed Cas9 and the complex has the advantage of translocating from the cytosol into the nucleus at a certain time point upon treatment with tamoxifen and modifying a specific DNA with the aid of guide RNA (gRNA), ultimately enabling a more elaborate DNA modification operation in a desired part at a desired time point.
Abstract:
The present disclosure provides methods for treating, preventing or reducing the severity of an eye disease. The methods of the present disclosure comprise administering to a subject in need thereof a therapeutic composition comprising an APLNR antagonist such as an anti-APLNR antibody in combination with a vascular endothelial growth factor (VEGF) antagonist (for example, aflibercept).
Abstract:
Provided herein are stapled or stitched polypeptides comprising an alpha-helical segment, wherein the polypeptide binds to the insulin receptor, and wherein the peptide comprises at least two cross-linked amino acids as shown in Formula (iii), or at least three cross-linked amino acids as shown in Formula (iv). Further provided are pharmaceutical compositions comprising the stapled or stitched polypeptides, methods of use, e.g., methods of treating a diabetic condition or complications thereof. Precursor “unstapled” polypeptides useful in the preparation of stapled and stitched polypeptides are also described.
Abstract:
New polypeptide agonists of AT2R are disclosed, as well as pharmaceutical compositions comprising the agonists, methods of their use in the treatment of diseases, conditions or disorders characterized by insufficient AT2R activity or excessive AT1R activity, and methods of their use as laboratory reagents for research purposes.
Abstract:
The present invention provides apelin receptor (APLNR) modulators that bind to APLNR and methods of using the same. The invention includes APLNR modulators such as antibodies, or antigen-binding fragments thereof, which inhibit or attenuate APLNR-mediated signaling. The invention includes APLNR modulators such as antibodies, or antibody fusion proteins thereof, that activate APLNR-mediated signaling. According to certain embodiments of the invention, the antibodies or antigen-binding fragments or antibody fusion proteins are fully human antibodies that bind to human APLNR with high affinity. The APLNR modulators of the invention are useful for the treatment of diseases and disorders associated with APLNR signaling and/or APLNR cellular expression, such as cardiovascular diseases, angiogenesis diseases, metabolic diseases and fibrotic diseases.
Abstract:
The present invention provides methods of predicting the relative growth rate, replication rate, or lethality of a first malignancy as compared to another malignancy or as compared to a plurality of malignancies, including methods of predicting the relative growth rate, replication rate, or relative lethality of a primary malignancy as compared to a metastatic malignancy, including comparing the concentration of Replikin sequences in the first malignancy with the concentration of Replikin sequences in another malignancy or malignancies and further provides Replikin peptides and Replikin Peak Genes identified within a malignancy for diagnostic, therapeutic, preventive, and predictive purposes.