Abstract:
Computing readable media, apparatuses, and methods for network allocation vector operations to reduce channel access delay. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry configure to: select a first one or more directional multi-gigabit (DMG) antennas from DMG antennas of the wireless device. The processing circuitry further configured to configure the wireless device to perform a clear channel assessment (CCA) for each of a plurality of CCA configurations applicable to the first one or more DMG antennas, where each CCA configuration comprises a second one or more of the DMG antennas. The processing circuitry further configured to if each CCA configuration applicable to the first one or more DMG antennas indicate the channel is idle, decrease a backoff time, and, if the backoff time is zero, configure the wireless device to transmit a packet on the channel using the first one or more DMG antennas.
Abstract:
Devices and methods of limiting wideband STA communication are generally described. The STA receives, over a primary channel, a wakeup frame containing an indication of a SP or CBAP to acquire a wideband TXOP over a wide bandwidth channel including the primary channel and a secondary channel and a control trailer having an indication of the wide bandwidth channel. Prior to the SP/CBAP, the STA opens reception from the primary channel to the wide bandwidth channel. The STA then communicates with another STA over the wide bandwidth channel and subsequently reduces reception from the wide bandwidth channel to the primary channel. The wakeup frame originates from an AP/PCP or the other STA, and contains fields indicating the wakeup frame length and SP or a sensing time length prior to the CBAP.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating an Enhanced Directional Multi Gigabit (EDMG) support indication. For example, a wireless station may be configured to generate a frame having a structure compatible with a Directional Multi Gigabit (DMG) frame structure, the frame including an EDMG supported field to indicate that the wireless station supports one or more EDMG features; and to transmit the frame over a DMG channel.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a short Sector Sweep (SSW) packet. For example, an apparatus may include circuitry and logic configured to cause a first wireless station to generate a short Sector Sweep (SSW) packet including at least a packet type field, a countdown field, a short SSW feedback field, and a direction field, the packet type field including a value to indicate a Short SSW packet type, the countdown field including a counter value to indicate a number of remaining short SSW packet transmissions, the direction field to indicate whether transmission of the short SSW packet is from a beamforming initiator or a beamforming responder; and to transmit the short SSW packet to a second wireless station over a directional frequency band during beamforming training between the first and second wireless stations.
Abstract:
Some demonstrative embodiments include apparatuses, systems, devices and/or methods of packet coalescing. For example, an apparatus may include circuitry and logic configured to cause a first wireless station to process a notification from a second wireless station including transmit (Tx) packet coalescing information, the Tx packet coalescing information including packet type information to define one or more packet types for packet coalescing at the first wireless station, and a coalescing threshold indicator to indicate a coalescing threshold to limit the packet coalescing at the first wireless station; to coalesce a plurality of packets for the second wireless station by buffering the plurality of packets at the first wireless station, the plurality of packets having at least one of the one or more packet types; and, based at least on the coalescing threshold, to process one or more buffered packets of the plurality of packets for transmission to the second wireless station.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating control information in a Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU). For example, an apparatus may include logic and circuitry configured to cause a wireless station to generate a PPDU comprising a header field, a payload after the header field, and a control trailer after the payload, the control trailer comprising control information, the header field indicating presence of the control trailer; and to transmit the PPDU over a directional wireless communication band.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of wireless transmission over a bonded channel. For example, a wireless station may be configured to determine a Clear Channel Assessment (CCA) busy state of a secondary channel in a directional wireless communication band upon detecting transmission of a first packet over the secondary channel; to determine a CCA idle state of the secondary channel upon detecting transmission of a second packet indicating an end of a transmission sequence including the first packet; and to process transmission of a wireless transmission over a bonded channel including a primary channel and the secondary channel, if the CCA state of the secondary channel and a CCA state of the primary channel are idle during at least a back-off and an InterFrame Space (IFS).
Abstract translation:一些演示实施例包括通过绑定信道的无线传输的装置,装置,系统和方法。 例如,无线站可以被配置为在检测到辅助信道上的第一分组的传输时,确定定向无线通信频带中的辅助信道的清除信道评估(CCA)忙状态; 在检测到指示包括第一分组的传输序列的结束的第二分组的传输时,确定辅助信道的CCA空闲状态; 并且如果辅助信道的CCA状态和主信道的CCA状态在至少回退期间是空闲的,则处理通过包括主信道和辅信道的绑定信道的无线传输的传输,并且InterFrame Space (IFS)。
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of wireless communication to a plurality of wireless stations. For example, a wireless station may be configured to assign to a plurality of data units a respective plurality of increasing sequence numbers (SNs); and to transmit one or more directional transmission sequences in one or more respective directions over a directional frequency band.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of dynamic allocation using a grant frame. For example, a wireless station may be able to generate a grant frame including a duration field and a Dynamic Allocation Info field, the Dynamic Allocation Info field including an allocation duration subfield and an access mode subfield, the access mode subfield to indicate an access mode of an allocation according to the grant frame; and to transmit the grant frame.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of beamforming, For example, a responder station may process a received Beam Refinement Protocol (BRP) request including a beam tracking request from an initiator station; and select whether or not to transmit a BRP response including beam tracking feedback, in response to the BRP request, based on a comparison between a. time period and a BRP tracking time limit, the time period being based on a timing of the BRP request and a timing of the BRP response.