Abstract:
Examples are disclosed for techniques for wireless docking. According to some embodiments, a mobile device may scan for an available docking device, for example a device with one or more I/O devices such as a display. The mobile device may automatically establish a secure wireless link with the docking device, for example, if the docking device is known to the mobile device. However, I/O services to be provided by the docking device are not activated. Instead, the docking device will prompt a user for identification data. If the identification data passes verification, the I/O services may be activated. According to some embodiments, the identification data obtained by the docking device may also be used to wake the mobile device, to login to the mobile device, and/or to unlock the mobile device for user access.
Abstract:
Some demonstrative embodiments include an apparatus, method and/or system of terminating a docking session between a mobile device and a docking device. For example, a mobile device may include a radio to communicate over a docking session via a wireless communication link between the mobile device and a wireless docking device; and an event classifier to determine a classification of an event of connectivity loss of the wireless communication link as an intentional disconnection or an unintentional disconnection, based on a comparison between at least one acceleration metric of the mobile device and at least one acceleration threshold, and to send to the wireless docking device an indication of the classification of the event of connectivity loss.
Abstract:
A method for operating a media agnostic universal serial bus (MAUSB) device includes a compute device having a link connection manager, a USB manager, and a state manager. The compute device establishes a link with a MAUSB device and a session with the MAUSB device. Subsequently to receipt of a sleep command for the compute device, the compute device transitions to a sleep state and terminates the link with the MAUSB device while keeping intact the session with the MAUSB device. The compute device transitions back to an active state in response to receipt of a wake command for the compute device. The compute device sends a wake request to the MAUSB device. If the MAUSB device responds to the wake request with an acceptance, then the compute device reestablishes the previous session with the MAUSB device. If instead an error is received, the compute device terminates the session.
Abstract:
Some demonstrative embodiments include an apparatus, method and/or system of controlling a wireless docking device. For example, a wireless docking interface may include an indicator to indicate at least a wireless docking disconnected state of a wireless docking device, a ready to connect state, and a wireless docking connected state; a control button; and a controller to trigger a wireless docking operation based on a change in a button state of the control button, the wireless docking operation including an operation selected from the group consisting of pairing the wireless docking device with a mobile device, disconnecting the mobile device from the docking device, and triggering the mobile device to switch between first and second power states.