Abstract:
A method and apparatus for use in a packet based wireless communication system for reducing automatic gain control (AGC) convergence time at a receiver are described. A radio frequency (RF) signal is received. The RF signal includes a sequence of a plurality of pre-defined power levels at a beginning of a preamble of the RF signal. Statistics for each of the plurality of pre-defined power levels at the beginning of the preamble of the RF signal are computed. An appropriate gain for a variable gain amplifier (VGA) is then computed based on the computed statistics for each of the plurality of pre-defined power levels and a-priori information related to transmission power differences between the plurality of pre-defined power levels of the sequence.
Abstract:
A method and apparatus for cross link (XL) establishment and maintenance are disclosed in which the XL enables direct communication between the LTE WTRU and the another LTE WTRU. In the method and apparatus, a XL between a Long Term Evolution (LTE) terminal wireless transmit/receive unit (T-WTRU) and an LTE helper WTRU (H-WTRU) is established and maintained. The T-WTRU is configured to maintain the XL while in an XL-idle substate in which data communication on the XL is disabled. A receiver of the T-WTRU is configured to receive a first keep alive message on the XL in the XL-idle substate, and, on a condition that the first keep alive message is received, at least one processor of the T-WTRU is configured to maintain the XL.
Abstract:
A method and apparatus for cross link (XL) establishment are disclosed. In the method and apparatus, a XL between a terminal wireless transmit/receive unit (T-WTRU) and a helper WTRU (H-WTRU) is established. The T-WTRU and the H-WTRU may be configured to operate in a plurality of RRC states and a plurality of RRC substates. To establish the XL, neighbor discovery, association information exchange, and a H-WTRU selection may be performed. Radio resource control (RRC) configuration of the T-WTRU and the H-WTRU may also be performed. In the method and apparatus, coverage for a T-WTRU may be handed over between a network and a H-WTRU or between two H-WTRUs.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
A method and apparatus are disclosed for demodulating a NR-PBCH signal. The method may comprise receiving a primary SS and an SSS. The received SSS signal may be used as a reference signal to detect demodulation reference signals of the NR-PBCH. These demodulation reference signals may be interleaved with data on the NR-PBCH. In one method, the NR-PBCH DMRS are associated with an SSB index in an effort to improve randomization in the synchronization process. The NR-PBCH payload may be demodulated using the PSS and/or SSS and the DMRS. In one embodiment, the NR-PBCH DMRS may mapped to DMRS REs on a frequency first and time second mapping basis.
Abstract:
Methods and apparatus for initial cell search and selection using beamforming are described. An apparatus is configured with multiple receive beams and includes an antenna and a processor. The processor is operatively coupled to the antenna and sweeps a respective one of the multiple receive beams during each of multiple synchronization sub-frames, using a pre-defined sweep time and dwell period, to detect a synchronization signal. The processor also obtains symbol timing information and a synchronization signal index from the detected synchronization signal. The obtained synchronization signal index corresponds to a synchronization signal index of the set. The process decodes a first broadcast channel using the obtained symbol timing information, the obtained synchronization signal index and a predefined or blind-coded symbol distance between the detected synchronization signal and the first broadcast channel. The process decodes a second broadcast channel using information obtained from decoding the first broadcast channel.