Abstract:
A method performed by a base station may include transmitting a configuration message including at least information indicating a subset of a plurality of transmit beams to be used for transmitting a set of synchronization signals. The set of synchronization signals including a primary synchronization signal and a secondary synchronization signal may be transmitted. A random access channel (RACH) transmission may be received using a receive beam associated with one of the subset of the plurality of transmit beams used by the base station to transmit the set of synchronization signals. The transmitted set of synchronization signals transmitted may have a signal quality above a signal quality threshold. A reference signal may be transmitted along with a physical broadcast channel (PBCH) transmission. The reference signal may have a sequence derived from a beam index associated with the one of the subset of the plurality of transmit beams.
Abstract:
A method and apparatus for use in a packet based wireless communication system for reducing automatic gain control (AGC) convergence time at a receiver are described. A radio frequency (RF) signal is received. The RF signal includes a sequence of a plurality of pre-defined power levels at a beginning of a preamble of the RF signal. Statistics for each of the plurality of pre-defined power levels at the beginning of the preamble of the RF signal are computed. An appropriate gain for a variable gain amplifier (VGA) is then computed based on the computed statistics for each of the plurality of pre-defined power levels and a-priori information related to transmission power differences between the plurality of pre-defined power levels of the sequence.
Abstract:
A method and apparatus for cross link (XL) establishment are disclosed. In the method and apparatus, a XL between a terminal wireless transmit/receive unit (T-WTRU) and a helper WTRU (H-WTRU) is established. The T-WTRU and the H-WTRU may be configured to operate in a plurality of RRC states and a plurality of RRC substates. To establish the XL, neighbor discovery, association information exchange, and a H-WTRU selection may be performed. Radio resource control (RRC) configuration of the T-WTRU and the H-WTRU may also be performed. In the method and apparatus, coverage for a T-WTRU may be handed over between a network and a H-WTRU or between two H-WTRUs.
Abstract:
A method and apparatus are disclosed for demodulating a NR-PBCH signal. The method may comprise receiving a primary SS and an SSS. The received SSS signal may be used as a reference signal to detect demodulation reference signals of the NR-PBCH. These demodulation reference signals may be interleaved with data on the NR-PBCH. In one method, the NR-PBCH DMRS are associated with an SSB index in an effort to improve randomization in the synchronization process. The NR-PBCH payload may be demodulated using the PSS and/or SSS and the DMRS. In one embodiment, the NR-PBCH DMRS may mapped to DMRS REs on a frequency first and time second mapping basis.
Abstract:
A method and apparatus for use in a packet based wireless communication system for reducing automatic gain control (AGC) convergence time at a receiver are described. A radio frequency (RF) signal is received. The RF signal includes a sequence of a plurality of pre-defined power levels at a beginning of a preamble of the RF signal. Statistics for each of the plurality of pre-defined power levels at the beginning of the preamble of the RF signal are computed. An appropriate gain for a variable gain amplifier (VGA) is then computed based on the computed statistics for each of the plurality of pre-defined power levels and a-priori information related to transmission power differences between the plurality of pre-defined power levels of the sequence.
Abstract:
A method performed by a wireless transmit/receive unit (WTRU) may include receiving a configuration message including timing information for monitoring at least a subset of a plurality of beams to receive a set of synchronization signals and receiving the set of synchronization signals based on the timing information. The received set of synchronization signals include a primary synchronization signal and a secondary synchronization signal. The method may include receiving a reference signal along with a physical broadcast channel (PBCH) transmission. The reference signal comprises a sequence that is derived from an index associated with one of the at least the subset of beams and associated with the received set of synchronization signals. The method may include transmitting a random access channel (RACH) transmission. The RACH transmission includes a preamble sequence corresponding to the one of the subset of the plurality of beams.
Abstract:
A method and apparatus for use in a packet based wireless communication system for reducing automatic gain control (AGC) convergence time at a receiver are described. A radio frequency (RF) signal is received. The RF signal includes a sequence of a plurality of pre-defined power levels at a beginning of a preamble of the RF signal. Statistics for each of the plurality of pre-defined power levels at the beginning of the preamble of the RF signal are computed. An appropriate gain for a variable gain amplifier (VGA) is then computed based on the computed statistics for each of the plurality of pre-defined power levels and a-priori information related to transmission power differences between the plurality of pre-defined power levels of the sequence.
Abstract:
Disclosed herein are measurement and interference avoidance for direct device-to-device (D2D) links. A method may be implemented by a wireless transmit/receive unit (WTRU). The method may include determining a sounding reference signal (SRS) to detect high interference and facilitate measurements on a link with another WTRU. The method may also include using the SRS on a direct link with another WTRU.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.