Abstract:
Channel quality may be measured in a device-to-device (D2D) communication network. The D2D communication network may include one or more D2D wireless transmit/receive units (WTRUs), wherein the D2D WTRUs may communicate using a D2D bandwidth. A D2D WTRU may receive a channel measurement resource configuration corresponding to a channel measurement resource. The D2D WTRU may further receive an RS on the channel measurement resource. The D2D WTRU may measure one or more channel state parameters from the channel measurement resource for a part of bandwidth overlapping with a D2D communication bandwidth, when the RS bandwidth is greater than the D2D communication bandwidth. The D2D WTRU may report the channel state parameters to a controlling entity. The controlling entity may configure a D2D frequency allocation between a transmitting device and a receiving device. The D2D frequency allocation may be based on the time averaged measurement.
Abstract:
A method and apparatus for using demodulation reference signal (DM-RS) based channel state information (CSI) feedback in Orthogonal Frequency Division Multiplexing-multiple-input multiple-output (OFDM-MIMO) systems is disclosed. A wireless transmit/receive unit (WTRU) may include: a receiver configured to receive broadcast information from an eNodeB, wherein the broadcast information is received by a plurality of WTRUs; and a processor configured to derive, from the received broadcast information, physical resource blocks having demodulation reference signals (DM-RS) and precoding information of the DM-RS; the receiver and the processor further configured to derive a channel estimation using the DM-RS received in the physical resource blocks, wherein the plurality of WTRUs derive a channel estimation using the DM-RS received in the physical resource blocks.
Abstract:
Disclosed herein are measurement and interference avoidance for direct device-to-device (D2D) links. A method may be implemented by a wireless transmit/receive unit (WTRU). The method may include determining a sounding reference signal (SRS) to detect high interference and facilitate measurements on a link with another WTRU. The method may also include using the SRS on a direct link with another WTRU.
Abstract:
A method and apparatus for cross link (XL) establishment are disclosed. In the method and apparatus, a XL between a terminal wireless transmit/receive unit (T-WTRU) and a helper WTRU (H-WTRU) is established. The T-WTRU and the H-WTRU may be configured to operate in a plurality of RRC states and a plurality of RRC substates. To establish the XL, neighbor discovery, association information exchange, and a H-WTRU selection may be performed. Radio resource control (RRC) configuration of the T-WTRU and the H-WTRU may also be performed. In the method and apparatus, coverage for a T-WTRU may be handed over between a network and a H-WTRU or between two H-WTRUs.
Abstract:
Channel quality may be measured in a device-to-device (D2D) communication network. The D2D communication network may include one or more D2D wireless transmit/receive units (WTRUs), wherein the D2D WTRUs may communicate using a D2D bandwidth. A D2D WTRU may receive a channel measurement resource configuration corresponding to a channel measurement resource. The D2D WTRU may further receive an RS on the channel measurement resource. The D2D WTRU may measure one or more channel state parameters from the channel measurement resource for a part of bandwidth overlapping with a D2D communication bandwidth, when the RS bandwidth is greater than the D2D communication bandwidth. The D2D WTRU may report the channel state parameters to a controlling entity. The controlling entity may configure a D2D frequency allocation between a transmitting device and a receiving device. The D2D frequency allocation may be based on the time averaged measurement.
Abstract:
Channel quality may be measured in a device-to-device (D2D) communication network. The D2D communication network may include one or more D2D wireless transmit/receive units (WTRUs), wherein the D2D WTRUs may communicate using a D2D bandwidth. A D2D WTRU may receive a channel measurement resource configuration corresponding to a channel measurement resource. The D2D WTRU may further receive an RS on the channel measurement resource. The D2D WTRU may measure one or more channel state parameters from the channel measurement resource for a part of bandwidth overlapping with a D2D communication bandwidth, when the RS bandwidth is greater than the D2D communication bandwidth. The D2D WTRU may report the channel state parameters to a controlling entity. The controlling entity may configure a D2D frequency allocation between a transmitting device and a receiving device. The D2D frequency allocation may be based on the time averaged measurement.
Abstract:
A method and apparatus for cross link (XL) establishment are disclosed. In the method and apparatus, a XL between a terminal wireless transmit/receive unit (T-WTRU) and a helper WTRU (H-WTRU) is established. The T-WTRU and the H-WTRU may be configured to operate in a plurality of RRC states and a plurality of RRC substates. To establish the XL, neighbor discovery, association information exchange, and a H-WTRU selection may be performed. Radio resource control (RRC) configuration of the T-WTRU and the H-WTRU may also be performed. In the method and apparatus, coverage for a T-WTRU may be handed over between a network and a H-WTRU or between two H-WTRUs.
Abstract:
A method and apparatus for using demodulation reference signal (DM-RS) based channel state information (CSI) feedback in Orthogonal Frequency Division Multiplexing-multiple-input multiple-output (OFDM-MIMO) systems is disclosed. The wireless transmit/receive unit (WTRU) receives one or more resource blocks from a base station, wherein the resource blocks (RBs) include demodulating reference signals (DM-RS) and precoder information. The precoder information is sent unicast or broadcasted over a common control channel. The WTRU estimates an effective channel estimate based on the DM-RS, derives an unprecoded channel based on the effective channel and the precoder information, generates CSI feedback based on the unprecoded channel, and transmits the CSI feedback to the base station. Alternatively, the WTRU estimates an effective channel estimate based on the DM-RS, quantizes the effective channel estimate and transmits the CSI feedback to the base station.
Abstract:
Channel quality may be measured in a device-to-device (D2D) communication network. The D2D communication network may include one or more D2D wireless transmit/receive units (WTRUs), wherein the D2D WTRUs may communicate using a D2D bandwidth. A D2D WTRU may receive a channel measurement resource configuration corresponding to a channel measurement resource. The D2D WTRU may further receive an RS on the channel measurement resource. The D2D WTRU may measure one or more channel state parameters from the channel measurement resource for a part of bandwidth overlapping with a D2D communication bandwidth, when the RS bandwidth is greater than the D2D communication bandwidth. The D2D WTRU may report the channel state parameters to a controlling entity. The controlling entity may configure a D2D frequency allocation between a transmitting device and a receiving device. The D2D frequency allocation may be based on the time averaged measurement.