Abstract:
A teleoperated surgical system may comprise a plurality of teleoperated surgical instruments; a user input device; and a controller operably coupled to the user input device and to the plurality of surgical instruments. The user input device may be configured to transmit an activation command to cause activation of a function of a first one of the plurality of surgical instruments in response to input at the user input device, the function being supported by remote-control supply equipment. The controller may be configured to output a feedback command to cause feedback to a user, the feedback indicating the first one of the plurality of surgical instruments is configured for activation in response to the activation command.
Abstract:
Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system having a kinematic structure configured to support an instrument and a processor. The processor is configured to place the system in a clutching mode; transition the system from the clutching mode to a set-up mode in response to detecting a joint operation of the kinematic structure; while in the set-up mode, determine an input displacement of a link from an initial positional relationship relative to a portion of the kinematic structure to a displaced positional relationship relative to the portion of the kinematic structure; and while in the set-up mode and in response to the determined input displacement, drive the kinematic structure so that the link returns toward the initial positional relationship relative to the portion of the kinematic structure.
Abstract:
A method includes moving a stabilization device comprising a stabilization surface relative to a base of a surgical cart, wherein the moving comprises moving the stabilization device from a retracted position in which the stabilization surface is spaced from the ground surface to a deployed position in which the stabilization surface is in contact with the ground surface, and wherein the moving comprises overcoming a biasing force biasing the stabilization device toward the retracted position.
Abstract:
A patient side cart for a teleoperated surgical system may include a base, a column connected to the base, a boom connected to the column, a manipulator arm connected to the boom, and a vibration reduction member. The manipulator arm may be configured to support a surgical instrument. The vibration reduction member may be configured to be moved between deployed and retracted positions relative to the base. The vibration reduction member may engage a ground surface in the deployed position and not be in contact with the ground surface in the retracted position. Various exemplary embodiments also relate to carts including a vibration reduction member and methods of controlling a vibration reduction member.
Abstract:
Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. A set-up mode employs an intuitive user interface in which one or more joints of the kinematic linkage are initially held static by a brake or joint drive system. The user may articulate the joint(s) by manually pushing against the linkage with a force, torque, or the like that exceeds a manual articulation threshold. Articulation of the moving joints is facilitated by modifying the signals transmitted to the brake or drive system. The system may sense completion of the reconfiguration from a velocity of the joint(s) falling below a threshold, optionally for a desired dwell time. Embodiments of the invention can provide for manual movement of a platform supporting a plurality of surgical manipulators or the like without having to add additional input devices.
Abstract:
Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system comprising a first manipulating means and processing means. The processing means is for detecting whether a first means for accessing an internal worksite is mounted to the first manipulating means; detecting an input indicating the system is to be in a set-up mode; and inhibiting, in response to detecting that the first means is mounted to the first manipulating means, transition of the system to the set-up mode.
Abstract:
User-initiated break-away clutching includes a robotic system having a joint, a brake or drive unit coupled to the joint, and a control system coupled with the brake or drive unit. The control system is configured to determine a first manual effort applied to the joint; inhibit, using the brake or drive unit, manual articulation of the joint in response to the first manual effort being below an articulation threshold; facilitate, using the brake or drive unit, the manual articulation of the joint in response to the first manual effort exceeding the articulation threshold; and inhibit, using the brake or drive unit, further manual articulation of the joint in response to a determination that a speed of the manual articulation of the joint is below a speed threshold.
Abstract:
Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system having a kinematic structure configured to support an instrument and a processor. The processor is configured to place the system in a clutching mode, transition the system from the clutching mode to a set-up mode in response to detecting a joint operation of the kinematic structure, establish a desired reference location of a link relative to a portion of the kinematic structure, detect an error between an actual reference location of the link relative to the portion and the desired reference location of the link, and drive the kinematic structure so as to decrease the error. The link is distal to the portion on the kinematic structure. The error is due to manual movement of the link.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a robotic surgical system may include detecting a first surgical instrument coupled to a first manipulator interface assembly of a teleoperated surgical system, the manipulator interface assembly being controlled by a first input device; detecting which one of a user's left and right hands operates the first input device; and assigning control of an auxiliary function of the first surgical instrument to a first auxiliary input device disposed in a left position relative to a second auxiliary input device if the user's left hand is detected to operate the first input device, or assigning control of an auxiliary function of the first surgical instrument to a second auxiliary input device disposed in a right position relative to the first auxiliary input device if the user's right hand is detected to operate the first input device. A frame of reference of the left position and right position is relative to a user operating the first input device.
Abstract:
A method for a minimally invasive surgical system is disclosed including reading first tool information from a storage device in a first robotic surgical tool mounted to a first robotic arm to at least determine a first tool type; reading equipment information about one or more remote controlled equipment for control thereof; comparing the first tool information with the equipment information to appropriately match a first remote controlled equipment of the one or more remote controlled equipment to the first robotic surgical tool; and mapping one or more user interface input devices of a first control console to control the first remote controlled equipment to support a function of the first robotic surgical tool.