摘要:
A system and method facilitating progressively transforming and coding digital pictures is provided. The present invention via employment of a multi-resolution lapped transform provides for progressive rendering as well as mitigation of blocking artifacts and ringing artifacts as compared to many conventional compression systems. The invention includes a color space mapper, a multi-resolution lapped transform, a quantizer, a scanner and an entropy encoder. The multi-resolution lapped transform outputs transform coefficients, for example, first transform coefficients and second transform coefficients. A multi-resolution representation can be obtained utilizing second transform coefficients of the multi-resolution lapped transform. The color space mapper maps an input image to a color space representation of the input image. The color space representation of the input image is then provided to the multi-resolution lapped transform. The quantizer receives the first transform coefficients and/or the second transform coefficients and provides an output of quantized coefficients for use by the scanner and/or the entropy encoder. The scanner scans the quantized coefficients in order to produce a one-dimensional vector for use by the entropy encoder. The entropy encoder encodes the quantized coefficients received from the quantizer and/or the scanner resulting in data compression.
摘要:
Systems and methods for performing adaptive filtering are disclosed. The present invention generates probabilities that can be used in an encoder, such as an arithmetic encoder and generates those probabilities in a computationally efficient manner. Probabilities of previously encoded coefficients are employed, effectively, in generating probabilities of the coefficients without regard to directional information. Thus, a large amount of information is adaptively and efficiently used in generating the probabilities. For the coefficients, the probability is computed based at least partly on at least one probability of a previously computed probability of a neighboring coefficient. Then, the coefficients are encoded using those computed probabilities.
摘要:
The coder/decoder (codec) system of the present invention includes a coder and a decoder. The coder includes a multi-resolution transform processor, such as a modulated lapped transform (MLT) transform processor, a weighting processor, a uniform quantizer, a masking threshold spectrum processor, an entropy encoder, and a communication device, such as a multiplexor (MUX) for multiplexing (combining) signals received from the above components for transmission over a single medium. The decoder comprises inverse components of the encoder, such as an inverse multi-resolution transform processor, an inverse weighting processor, an inverse uniform quantizer, an inverse masking threshold spectrum processor, an inverse entropy encoder, and an inverse MUX. With these components, the present invention is capable of performing resolution switching, spectral weighting, digital encoding, and parametric modeling.
摘要:
The invention facilitates adaptive compression of multi-level images, such as captured digital images of a whiteboard, etc., encoding a bitstream comprising a color image component and a black-and-white image component. Either or both of a color and a black-and-white image can be output to a user based on user desires, receiving device capabilities, etc.
摘要:
A “STAC Codec” provides lossless audio compression and decompression by processing an audio signal using integer-reversible modulated lapped transforms (MLT) to produce transform coefficients. Transform coefficients are then encoded using a backward-adaptive run-length Golomb-Rice (RLGR) encoder to produce losslessly compressed audio signals. In additional embodiments, further compression gains are achieved via an inter-block spectral estimation and data sorting strategy. Further, compression in the transform domain allows the bitstream to be partially decoded, using the corresponding RLGR decoder, to reconstruct the frequency-domain coefficients. These frequency-domain coefficients are then directly used to speed up various transform-domain based applications such as transcoding media to lossy or other formats, search, identification, visualization, watermarking, etc. In other embodiments, near-lossless compression is achieved by right-shifting transform coefficients by some number of bits such that quantization errors are not perceived as distortion in the decoded audio signal.
摘要:
An improved method and block transform for image or video encoding and decoding, wherein transformation and inverse transformation matrixes are defined such that computational complexity is significantly reduced when encoding and decoding. For example, in the two-dimensional inverse transformation of de-quantized transform coefficients into output pixel information during decoding, only four additions plus one shift operation are needed, per co-efficient transformation, all in sixteen-bit arithmetic. Transformations provide correct results because quantization during encoding and de-quantization (sixteen bit) during decoding, via the use of one of three tables selected based on each coefficient's position, have parameter values that already compensate for factors of other transformation multiplications, except for those of a power of two, (e.g., two or one-half), which are performed by a shift operation during the transformation and inverse transformation processes. Computational complexity is significantly reduced with respect to other known transforms without adversely impacting compression or quality.
摘要:
An improved method and block transform for image or video encoding and decoding, wherein transformation and inverse transformation matrixes are defined such that computational complexity is significantly reduced when encoding and decoding. For example, in the two-dimensional inverse transformation of de-quantized transform coefficients into output pixel information during decoding, only four additions plus one shift operation are needed, per co-efficient transformation, all in sixteen-bit arithmetic. Transformations provide correct results because quantization during encoding and de-quantization (sixteen bit) during decoding, via the use of one of three tables selected based on each coefficient's position, have parameter values that already compensate for factors of other transformation multiplications, except for those of a power of two, (e.g., two or one-half), which are performed by a shift operation during the transformation and inverse transformation processes. Computational complexity is significantly reduced with respect to other known transforms without adversely impacting compression or quality.
摘要:
An improved method and block transform for image or video encoding and decoding, wherein transformation and inverse transformation matrixes are defined such that computational complexity is significantly reduced when encoding and decoding. For example, in the two-dimensional inverse transformation of de-quantized transform coefficients into output pixel information during decoding, only four additions plus one shift operation are needed, per co-efficient transformation, all in sixteen-bit arithmetic. Transformations provide correct results because quantization during encoding and de-quantization (sixteen bit) during decoding, via the use of one of three tables selected based on each coefficient's position, have parameter values that already compensate for factors of other transformation multiplications, except for those of a power of two, (e.g., two or one-half), which are performed by a shift operation during the transformation and inverse transformation processes. Computational complexity is significantly reduced with respect to other known transforms without adversely impacting compression or quality.
摘要:
A “multi-resolution signal renderer” provides a computationally efficient process for generating reduced-resolution versions of a hierarchical transform coded digital signal from the encoded coefficients of that signal. The multi-resolution signal renderer begins by decoding the transform coded signal up to the highest hierarchical resolution not exceeding the desired signal resolution. The multi-resolution signal renderer then operates in one of two modes to generate reduced resolution signals. First, to generate signals at coded hierarchical resolution levels, DC coefficients of the transform coefficients are scaled, and then lowpass filtered to reduce aliasing in the signal. Second, to generate intermediate resolution signals between coded hierarchical resolution levels, the multi-resolution signal renderer retrieves the encoded coefficient blocks for the next highest resolution coding level, lowpass filters those blocks in the transform domain, performs an inverse transform, and then downsamples the resulting signal to the desired resolution.
摘要:
A system and method facilitating image retouching is provided. The invention includes an image retoucher having a boundary detector and an image extender. The invention provides for the image retoucher to extend care pixels of at least one of a foreground and a background near a detected spurious boundary by altering the binary mask used for compression of the foreground and/or the background.