Abstract:
The invention relates to the extrusion of tire components with a large change of gauge across their cross-sectional area. It is provided a method and an assembly for extruding such a tire component with an extruder feeding a flow channel with a downstream die opening, whereby a deflector is provided in the flow channel upstream the die opening such that a flow of rubber is slowed down in front of broad portions of the cross-sectional area of the downstream die, avoiding distortion or bending of the extruded tire component.
Abstract:
A tire has an axis of rotation. The tire includes two sidewalls extending radially outward and a tread disposed radially outward of the two sidewalls and interconnecting the two sidewalls. The tread includes a main portion comprising a first compound and a reinforcing structure comprising a second compound having reinforcing short fibers oriented between −20 degrees to +20 degrees to a circumferential direction of the tread. The main portion of the tread includes at least one circumferential groove separating circumferential ribs. Each circumferential groove has two sides and a base therebetween. The reinforcing structure includes a layer of the second compound secured to the sides of each circumferential groove.
Abstract:
A pneumatic rubber tire containing at least one electrically conductive cord extending between its bead and tread portions to provide a path of least electrical resistance. The electrically conductive cord is comprised of at least one electrically conductive metal filament spirally wound around a centrally disposed core of at least one organic fiber. The electrically conductive cord does not extend to, and is exclusive of, an outer surface of the tire.