摘要:
The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.
摘要:
The invention includes a process for separating CO2 from natural gas including: contacting a mixture of CO2 and natural gas with a first side of a carbon membrane in a manner to cause a portion of the mixture to pass through the carbon membrane to a permeate side. The resulting mixture on the permeate side becomes enriched in CO2 over that of the mixture on the first side. The carbon membrane includes an asymmetric hollow filamentary carbon membrane, including a partial carbonization product of an asymmetric hollow filament including an aromatic imide polymer material. The carbon membrane is at least 95 weight percent carbon, and has a dense layer located in the outside surface portion of the hollow filamentary membrane and a porous base layer continued from the dense layer and located in the inside portion of the hollow filamentary membrane. The contacting step occurs at a pressure of at least about 200 psia.
摘要:
The present invention generally relates to power generation systems configured to absorb and capture a component, such as carbon dioxide, in a flue gas for later sequestration or utilization, wherein heat generated in the sorption process is captured for use in the power generation system. In some examples, the heat of sorption is used to preheat fluids in one or more systems of the power generation system to reduce the heating load on the subsystem. By using the heat of sorption, the carbon dioxide capture and sequestration process not only reduces or eliminates the concentration of carbon dioxide in the flue gas, but reduces or eliminates the parasitic effect of carbon dioxide capture and sequestration on power generation.
摘要:
The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
摘要:
The present invention relates to a method for treating molecular sieve particles for use in a mixed matrix membrane useful in, for example, gas separations. Membranes employing treated molecular sieve particles may exhibit enhanced permeabilities and selectivities in regard to, for example, the separation of carbon dioxide and methane.
摘要:
The present invention relates to functionalized polymeric sorbents and processes of employing them to remove low level contaminants from fluid streams. Poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) functionalized with a compound having the structure NH2—R1OH wherein R1 is a substituted or unsubstituted phenylene may be particularly useful to remove low levels of phenol compounds from, for example, an aqueous fluid stream comprising one or more sugars such as results from a hydrolysis of lignocellulosic materials.
摘要:
The present invention relates to functionalized polymeric sorbents and processes of employing them to remove low level contaminants from fluid streams. Poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) functionalized with a compound having the structure NH2—R1OH wherein R1 is a substituted or unsubstituted phenylene may be particularly useful to remove low levels of phenol compounds from, for example, an aqueous fluid stream comprising one or more sugars such as results from a hydrolysis of lignocellulosic materials.